自动驾驶系统进阶与项目实战(十)基于PointPillars的点云三维目标检测和TensorRT实战(1)

本文深入解析了PointPillars方法,它是一种用于激光雷达点云三维目标检测的高效算法,已被百度Apollo和Autoware采用。通过PyTorch和Kitti数据集,文章详细介绍了如何训练和验证PointPillars网络,并讨论了模型的优化及TensorRT的使用,以实现更快的推理速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自动驾驶系统进阶与项目实战(十)基于PointPillars的点云三维目标检测和TensorRT实战(1)

发表于CVPR2019的PointPillars是目前比较受业内认可的激光雷达三维检测算法,其推理速度和性能俱佳,百度Apollo和Autoware两个开源自动驾驶项目的感知系统均包含了基于PointPillars目标检测模块。本文首先从理论层面解析PointPillars方法,接着使用PyTorch和Kitti数据集从零开始训练一个神经网络,我们将使用kitti的测试数据推理并可视化检测结果。在下一篇文章中,我们将模型导出为ONNX,并且进一步导出为TensorRT的engine模型,最后在C++项目中推理TensorRT模型。完成本文,你将能复现以下结果:

在这里插入图片描述

PointPillars方法的特点

和2D图像的深度学习目标检测很不相同,点云数据具有两个显著特征:(1)相对2D图像来说,点云数据非常稀疏;(2)点云数据是三维的。为了将图像领域卷积神经网络做模式识别的经验引入三维点云中,一些深度学习方法采用了三维卷积方法或者是将点云投射为2维深度图,还有一类方法是使用鸟瞰视角(Bird’s Eye View)来组织点云数据的输入,相比于2维深度图,鸟瞰图不存在遮挡问题,但是数据分布更加稀疏

评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AdamShan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值