【科普】CPU、GPU、NPU

在这里插入图片描述
三张图均包括Control(控制单元)、ALU(运算单元)、Cache(高速缓冲存储器)
CPU(CentralProcessingUnit):中央处理器,大部分都是控制单元、少量的ALU进行运算,是一个串行结构,所以在进行计算密集型任务时效率不高,
GPU(Graphics Processing Unit):图形处理器 架构有一些小的control和cache单元用来存储数据和调度任务,但80%的ALU构成的,所以GPU的算力很强,并行运算
GPU拥有强大的并行计算能力,但功耗高,体积大,价格贵,无法用到一些小型移动设备上。因此才有了NPU——体积小、功耗低、计算效率高
NPU(NeuralNetwork Processing Unit):神经网络处理单元(AI处理器),由于深度学习计算的规则性,Npu使用解耦合的mem,ITCM和OTCM作为存储单元二是根据深度学习本身的特点,使NPU具有数据流的架构,各个计算单元PE间是有通信的,充分利用数据的复用性可以减少数据,在PE和I T C M这些存储单元之间的通信在减少功耗的同时,减少通信的实验
特点:计算和存储一体化
视频
视频

CPUCentralProcessingUnit大量Control、少量ALU串行
GPUGraphics Processing Unit小的control和cache单元用来存储数据和调度任务,80%的ALU并行
NPUNeuralNetwork Processing UnitNPU并行
### CPUGPUNPU 的区别及其应用场景 #### 中央处理器 (CPU) 中央处理器(CPU),通常被称为计算机的大脑,设计用于处理广泛类型的计算任务。这些任务包括但不限于运行操作系统功能、管理输入输出操作以及执行应用程序逻辑。现代多核CPU能够高效地分配资源来并发处理多个线程的任务[^1]。 对于批处理大小设置,默认每设备训练批次大小为8,适用于CPU核心的配置说明也体现了这一点。这意味着,在训练期间,每个CPU核心会接收固定数量的数据样本进行处理,以此平衡负载并提升效率。 ```python per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU/MPS/NPU core/CPU for training."} ) ``` #### 图形处理器 (GPU) 图形处理器(GPU)最初是为了加速图像渲染而设计的硬件单元,但随着技术的发展,其应用范围已经扩展到通用计算领域。相比于传统CPUGPU拥有更多的处理单元(ALUs),特别适合大规模矩阵运算和平行数据流处理。因此,在机器学习特别是深度学习方面表现尤为突出,因为这类算法往往涉及大量相似结构化的重复计算工作[^2]。 当涉及到评估阶段时,同样采用默认值8作为每设备评测批次尺寸,表明即使是在不同架构下(如GPU),保持一致性的批量规模有助于维持稳定性和可预测性。 ```python per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU/MPS/NPU core/CPU for evaluation."} ) ``` #### 神经网络处理器 (NPU) 神经网络处理器(NPU)是一种专门为人工智能推理和训练定制优化过的集成电路芯片。相较于其他两种类型,NPUs更专注于支持特定的人工智能框架和技术栈,比如TensorFlow或PyTorch等,并且内置了许多针对卷积层、激活函数以及其他常见AI组件的高度专业化指令集和支持库。这使得它们能够在更低能耗的情况下实现更高的吞吐量和更快的速度,非常适合部署在边缘端设备上完成实时分析任务。 例如,在移动平台上,通过利用像苹果公司的Metal API这样的接口,可以更好地发挥出集成在其SoC内部的小型专用AI协处理器——即所谓的“Apple Neural Engine”的潜力,从而显著改善用户体验的同时减少延迟时间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值