航识无涯学术致力于成为您在人工智能领域的领航者,定期更新人工智能领域的重大新闻与最新动态,和您一起探索AI的无限可能。
2025深度学习发论文&模型涨点之——频域+时间序列
近年来,频域分析方法与时域-频域联合建模技术已成为时间序列研究的前沿方向。通过傅里叶变换、小波分析等工具将信号分解为频域分量,研究者能够有效捕捉非平稳序列的周期性、趋势性及突变特征(如Stock & Watson, 2016)。在金融波动分析、气候模式预测等领域,频域特征与时间动态的耦合建模(如通过时频分布或希尔伯特-黄变换)显著提升了模型对多尺度规律的解析能力(Zhang et al., 2020)。然而,现有研究在频域噪声抑制、跨频段因果关系建模等方面仍存在挑战。
我整理了一些【论文+代码】合集,需要的同学公人人人号【航识无涯学术】发123自取。
论文精选
论文1:
Estimating primary production from oxygen time series: A novel approach in the frequency domain
基于氧时间序列估算初级生产力:一种频率域的新方法
方法
傅里叶变换:通过傅里叶变换将氧浓度时间序列从时间域转换到频率域,分析其频率成分。
GPP与频率成分的关系:假设初级生产力是导致氧浓度日变化的主要过程,推导出时间平均GPP与氧浓度的24小时谐波幅度之间的关系。
模型假设:基于假设(如呼吸作用对日频率的影响可忽略、边界通量无系统性日变化等),简化了氧浓度的傅里叶变换方程。
修正空气-水交换:考虑空气-水交换对氧浓度变化的阻尼效应,并通过理论分析和模型模拟评估其对GPP估计的影响。
信号处理:对氧时间序列进行预处理,包括限制为整数天、去除长期趋势等,以提高傅里叶变换的准确性。
创新点
频率域分析:将传统的基于时间域的初级生产力估算方法扩展到频率域,提供了一种新的视角和工具,能够更好地分离和分析不同过程对氧浓度变化的贡献。
提高估算精度:通过模型模拟和现场数据验证,证明了该方法在不同水体混合、空气-水交换和初级生产力水平的系统中均能有效估算GPP,特别是在潮汐影响显著的河口和沿海系统中,与传统方法相比,显著提高了估算精度。
适用范围扩大:该方法适用于多种水体环境,包括河口、沿海和湖泊等,扩大了可以从现场氧浓度估算初级生产力的系统范围。
对观测误差和随机驱动因素的见解:通过频率域分析,获得了关于观测误差和氧动力学随机驱动因素对基于氧时间序列的代谢估算影响的有用见解,有助于更好地理解和改进生态系统代谢的估算方法。
论文2:
Frequency-domain MLPs are More Effective Learners in Time Series Forecasting
频率域的多层感知机是时间序列预测中更有效的学习者
方法
频率域转换:将时间序列信号通过离散傅里叶变换(DFT)转换到频率域,将信号分解为多个频率分量。
频率学习:设计了专门的频率域MLP(FreMLP),分别对频率分量的实部和虚部进行学习,以捕捉信号的关键模式。
双阶段架构:提出了FreTS架构,包含两个阶段:域转换和频率学习。域转换将时间序列信号从时间域转换到频率域,频率学习则在频率域内进行模式学习。
通道和时间依赖性建模:FreTS在通道维度和时间维度上分别应用频率域MLP,以建模通道间和时间序列内的依赖性。
反向转换:将学习到的频率域特征通过逆傅里叶变换转换回时间域,以进行最终的预测。
创新点
全局视图:频率域MLP能够提供信号的全局视图,更容易学习全局时空依赖性。与时间域方法相比,FreTS在捕捉全局周期性模式方面表现出明显优势,平均提高了9.4%的MAE和11.6%的RMSE。
能量压缩:频率域MLP专注于信号能量集中的较小关键部分,能够更清晰地识别重要特征,同时过滤噪声影响。实验表明,FreMLP在学习权重时能够展现出更清晰的对角依赖性,相比时间域方法,FreTS在长短期预测任务中均显示出显著的性能提升。
性能提升:在13个真实世界的时间序列基准测试中,FreTS在短长期预测任务中均优于现有的最先进方法。与Transformer等基于注意力机制的方法相比,FreTS在长序列预测任务中将MAE和RMSE降低了20%以上。
计算效率:FreTS的复杂度为O(N log N + L log L),在处理大规模数据时,相比基于Transformer和GNN的方法,FreTS在参数数量和训练时间上均显著减少,平均减少了3倍的参数数量和3倍以上的训练时间。
论文3:
Comparison and Clinical Application of Frequency Domain Methods in Analysis of Neonatal Heart Rate Time Series
新生儿心率时间序列分析中频率域方法的比较与临床应用
方法
Lomb周期图(LP):采用基于最小二乘拟合的Lomb周期图方法分析不均匀采样的心率数据,无需插值,直接处理RR间期。
间隔谱:计算RR间期时间序列的离散傅里叶变换(DFT)的周期图,称为间隔谱。
心率样本谱:通过插值方法将RR间期数据转换为均匀采样的心率样本,然后计算其DFT的周期图。
统计显著性测试:使用修改后的Fisher测试评估周期图中峰值的统计显著性,考虑了周期图平均化的影响。
模拟数据与临床数据:使用积分脉冲频率调制(IPFM)模型生成模拟心率数据,并分析临床数据,包括机械通气的早产儿和新生儿败血症前后的RR间期记录。
创新点
Lomb周期图的优势:与传统的间隔谱和心率样本谱相比,Lomb周期图在分析新生儿心率数据时表现出更高的准确性,特别是在接近平均采样率一半的关键频率附近,能够更有效地检测呼吸性窦性心律不齐(RSA),平均提高了RSA检测的Fuller统计量。
随机共振现象:在临床数据中发现,新生儿心率变异性(HRV)在加入少量噪声时会增强周期性,即随机共振现象。这一现象表明,适当的噪声可以增强RSA信号与噪声的比值,平均提高了0.2的信号-噪声比。
败血症前的频率域变化:在新生儿败血症临床诊断前24小时,所有频率范围内的功率均有所降低。通过多变量逻辑回归分析,发现低频段的功率降低对早期检测新生儿败血症和类败血症疾病有显著的预测价值,ROC曲线下面积从0.65提高到0.69,表明频率域分析可以为临床诊断提供额外的信息。