- 博客(93)
- 资源 (1)
- 收藏
- 关注

原创 YOLOv8原理深度解读,超级详细【未完待续】
本文对YOLOv8里面每个部分的每个组件都进行了详细解释,如Backbone, Neck, Head。本文同时也介绍了YOLOv8的损失函数的设计以及样本匹配的方法。
2023-04-09 17:24:17
94675
31
原创 Oracle数据库笔记
去虚拟机创建表空间切换到oracle用户把下面写的这段代码扔进去创建子空间如果想修改数据库对应文件的大小和存储位置,用ALTER为表空间添加新的数据文件。
2025-06-04 21:33:07
310
原创 Linux shell练习题
2. 判断~/bigdata.txt 是否存在,若已存在则 进行删除该文件 然后打印出 ”该文件已存在,已被删除“,如不存在 则创建文件,然后输出打印:”该文件不存在,已创建“1. 判断~/bigdata.txt 是否存在,若已存在则打印出”该文件已存在“,如不存在,则输出打印:”该文件不存在“8.将 / 目录下的详细信息写入到文件 tong.log 中,然后打印该文件中的文件名和大小。9.统计~/目录下所有小于1MB的文件数量。7.计算1的阶乘到10的阶乘的累加值。
2025-06-03 10:52:56
344
原创 Apriori关联算法
支持度: 数据集中包含该项集(项集就是元素可能的组合)原始数据的条数 占原始数据的总条数 的比例。例如上图中,{豆奶} 的支持度为 4/5。{豆奶, 尿布} 的支持度为 3/5。,从图中可以看出 支持度({尿布, 葡萄酒}) = 3/5,支持度({尿布}) = 4/5,所以 {尿布} -> {葡萄酒} 的可信度 = 3/5 / 4/5 = 3/4 = 0.75。可信度:{尿布} -> {葡萄酒}这样的关联规则的可信度。Apriori---[əpriˈɔri] ---先天的,推测的。
2024-03-27 15:15:13
330
原创 SQL高级用法
table_a这个table有三个partition,一个是p_product,一个是p_model,一个是p_date,但是我只希望看p_model这一个partition里面可能的选项,应该如何写SQL查看?把首尾用区分字符 前后加 *替代,匹配到然后替换为空,这样会把三个分区的所有目前有组合的可能性都展示出来。文心一言说可以下面这样,但是在我这里用不了。然后把Excel格式的结果下载下来。
2024-03-01 09:40:55
719
原创 Excel的中高级用法
在Flink中,所有的数据都被视为流进行处理,无论是批数据还是流数据,都可以在同一个Flink集群中进行处理。我在Excel表中遇到这个问题,A1写着2022-01-01,A1向下到A15都是空的,A16写着2022-01-02,A17-A27是空的,A28写着2022-01-03, A29-A40是空的。后面还有上千行的数据都是类似情况,其中一行是有日期的,这一行以后十几行都是空的,我希望这十几行都填充上之前那一行?每个批次的数据被单独处理,处理完成后将结果进行整合,得到最终的结果。
2024-02-25 16:22:49
1892
原创 数据分析师必会的Linux bash shell命令【更新中,还未写完】
Linux的cp命令主要用于复制文件或目录。其中,source是要复制的文件或目录,destination是目标位置。options是一系列的代号,表示各种复制的方式首先假如一句命令没有明确写出[options]是什么,或者说直接省略了[options]的话,比如下面这样默认[options]是取 -i。这个-i 是什么意思?-i是 -interactive(交互的)的缩写。在cp命令中表示在复制文件时进行交互式确认。当目标文件已经存在时,-i选项会提示用户是否覆盖目标文件。
2024-01-19 17:34:43
1133
原创 SQL入门语句
本文是MySQL和SQL语句的入门帖子。通过阅读本文你可以学到SQL的以下基本操作:数据汇总计算min max average等统计量,用WHERE筛选数据,用GROUP BY 来分组计算统计量。使用JOIN来联结多张表取数据。数据的增删改查。
2023-11-07 21:59:12
318
原创 数据分析指标体系的构建
(S1)为了用方式准确描述场景,提出一系列的指标。(S2)将指标起来,形成的逻辑体系指标体系 = 指标 + 体系单独的几个指标不能称之为指标体系(1)目的清晰 : 指标体系围绕一定的目的 展开分析(2)评价全面 : 能够全面描述业务运行情况(3)指标简约 : 要从复杂的指标中,选择重要有代表性的指标指标分级即使很少的单项指标,相互组合也会衍生出大量的指标。比如用户总数和操作时间一结合就是用户操作时间分布。
2023-11-02 21:28:17
571
原创 YOLOv8训练报错FileNotFoundError: train: No labels found in ...VisDrone2019-DET-train/labels.cache
本文详细讲解了在在使用YOLOv8,在VisDrone数据集上训练的时候,在使用train.,py进行 数据下载和训练 的时候,会遇到下面这个报错如何解决。FileNotFoundError: train: No labels found in /datasets/VisDrone/VisDrone2019-DET-train/labels.cache, can not start training. See https://
2023-10-21 01:22:17
11093
2
原创 YOLOv4【未完待续】
YOLOv4从学术角度贡献并不大,但是对于工程落地的价值是很大的。目标检测改进的一个工具箱,是各种trick(训练技巧)的集合。其实YOLOv4改进的trick有很多,但是我们这里只把工业界落地最多、对工业界最有价值的改进点和创新点是下面这些。从performance的角度说YOLOv4的速度是和YOLOv3是差不多的,但是精度实现了较大幅度的提升(AP从33提升到了42)。但是实话实说,YOLOv4速度和精度还是比不上EfficientDet、ATSS、ASFF\YOLOv4模型效果图放一个过来。
2023-09-20 15:01:41
184
原创 YOLOv3模型原理深度解析
本文从以下六个层面对YOLOv8的模型原理进行了解读。本文首先讲解了其backbone DarkNet53使用残差连接和1×1卷积带来的优势。然后针对backbone上的Feautre Pyramid Network在CNN自动特征提取、整合多尺度特征上的优势。然后本文讲解YOLOv3首次引入的anchor based方法。YOLOv3采用相对坐标的方式来推算绝对坐标。最后本文分析了损失函数的构成
2023-09-18 12:30:42
1859
原创 力扣刷题班 第3课 02-分治与回溯算法
电话号码的字⺟组合 给定⼀个仅包含数字 2-9 的字符串,返回所有它能表示的字⺟组合。答案可以按 任意顺序 返回。给出数字到字⺟的映射如下(与电话按键相同)。注意 1 不对应任何字⺟•• 示例 1: 输⼊:digits = "23" 输出:[“ad","ae","af","bd","be","bf","cd","ce","cf"]• 示例 2: 输⼊:digits = "" 输出:[]• 示例 3: 输⼊:digits = "2" 输出:[“a","b","c"]leetcode17没太懂。
2023-09-16 11:21:16
250
原创 力扣刷题班 第2节:递归
写⼀个函数,输⼊ n ,求斐波那契(Fibonacci)数列的第 n 项。斐波那契数列的定义如下:F(N) = F(N - 1) + F(N - 2), 其中 N > 1.斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加⽽得出。注意:这里输出的是Fibnacci数列的第n项,而不是前n项之和上面这段代码的意思是(1)递推关系(recurrentce relation):所有的f(n)都可以被拆成 前一项 f(n-1) 和前两项 f(n-2) 的和。
2023-09-16 10:03:05
324
原创 力扣刷题班第1节:Python语法常遗漏的知识
下面这些笔记都是点到为止,不进行深入解释。大多数学过python的朋友看到就知道什么意思的,我就不解释了。以下仅仅记录和后面力扣刷题相关的、且平常会遗漏的语法知识。
2023-09-11 12:02:39
205
原创 目标检测评估指标mAP:从Precision,Recall,到AP50-95【未完待续】
本文从True Positive, False Positive和False Negative的定义出发,讲解了Precision和Recall的定义,如何绘制P-R(Precision Recall)曲线,如何进一步计算得出AP。本文提供了手动计算所有指标的过程以及用sklearn计算这些指标的代码以及P-R curve的示意图。通过阅读本文你可以从源头开始了解mAP这一指标是如何计算的。
2023-09-08 16:03:13
27350
11
原创 浅析目标检测入门算法:YOLOv1,SSD,YOLOv2,YOLOv3,CenterNet,EfficientDet,YOLOv4
本文致力于让读者对以下这些模型的创新点和设计思想有一个大体的认识,从而知晓YOLOv1到YOLOv4的发展源流和历史演进,进而对目标检测技术有更为宏观和深入的认知。本文讲解的模型包括:YOLOv1,SSD,YOLOv2,YOLOv3,CenterNet,EfficientDet,YOLOv4。
2023-09-07 08:48:05
5124
原创 2024届CV与数据分析校招信息汇总(持续更新中)
找寻的岗位:CV、数据分析NLP和RS、物联网、大数据开发、java开发、C++开发岗位、测试岗 也会统计——用于判断是否需要学点NLP和RS,投投这个领域的。万一NLP尤其是大模型领域岗位特别多,那我就应该学一学,去撞撞运气实习的只会记录岗位的名字——用于判断现在实习生招什么岗位需求大,要是未来实在找不到工作,先找个实习,积累点项目经验也是一条退路。
2023-09-03 22:06:42
10862
1
原创 MMdetection在VisDrone2019上训练FCOS和CenterNet
训练时候调用的train.py位于./tools下面。不知道要不要安装caffe?
2023-08-17 11:11:52
814
原创 评估修改后的YOLOv8模型的参数量和速度
YOLOv8公布了自己每个模型的速度和参数量那么如果我们自己对YOLOv8做了一些修改,又怎么样自己写代码统计一下修改后的模型的参数量和速度呢?其实评估这些东西,大多数情况下不需要我们从头自己写一个函数来评估一般来说,只要是作者公布的这些分数。作者都会把这些分数的实现代码放在它的代码中。你所需要的仅仅是找到这段代码所在的位置,然后直接调用作者的代码,计算即可。上述计算要求的diam被放在了了下面这个位置(ultralytircs8.0.40这个版本是这样,其他版本有可能会不同)
2023-08-01 04:45:48
6217
5
原创 加载已训练好的目标检测YOLOv8,v5,v3,v6模型,对数据集中某张图片中的object打上方框、标出类别,并将图片保存到本地
在与ultralytics代码同一层级下新建 predict.py。
2023-07-27 06:54:12
1755
原创 VisDrone2019上训练YOLOv5(用ultralytics)
在本地做测试用coco128这128张图片。跑通了,上云端服务器的饿时候在换成VisDrone.yaml这个我们要训练的数据集。使用的package library: ultralytics。环境:python3.8, torch=1.7.0。本地新建一个train.py,内容写下面这些。
2023-07-25 21:55:27
1190
1
原创 繁體標楷體 如何安装使用?
—这个地方下载:http://www.downcc.com/font/316365.html。——下载下来被叫做“台湾标楷体DFKai-SB.ttf”——安装到“C:\Windows\Fonts”以后名字叫。——在WPS中使用,被称为这个。
2023-07-25 17:02:46
4964
2
原创 Chrome浏览器无法登录知乎、b站解决方案
在搜索栏(search flags)里面输入“Block insecure private network requests”,弹出下面这个界面。使用Firefox浏览器和Edge浏览器可以正常访问知乎和B站。但是一旦使用Chrome浏览器以后会出现先这个情况,无法访问。在Chrome浏览器的地址栏输入如下地址。把右侧Default换成Enabled。
2023-06-10 15:20:29
11681
2
原创 【五一创作】[论文笔记]图片人群计数CSRNet,Switch-CNN
应用最最广泛的:e, is the most widely used while working with counting problems.简单实现版本:https://github.com/CommissarMa/CSRNet-pytorch优势:(1)更大的感受野to deliver larger reception fields(2)在不扩大网络复杂性。
2023-04-29 15:36:02
1671
3
原创 [论文笔记]C^3F,MCNN:图片人群计数模型
代码:https://github.com/CommissarMa/Crowd_counting_from_scratch。
2023-04-28 21:16:10
1563
2
原创 人群计数经典方法Density Map Estimation,密度图估计
根据每个人与邻域的平均距离来自适应地确定每个人的传播参数(确定这幅图中人头部的大小)数学空间关系,可以约束邻近区的计数估计。用相邻k个人头与该人头的平均距离。这个人头与相邻人头中心点的距离。透视 density map。在训练过程中微调密度图。
2023-04-28 20:58:24
4848
1
原创 人群计数传统方法:object detection, regression-based
数据标注方式:(1)人很少、人很大的时候用bounding box,把人从头到脚都框进长方形方框内,这个方框只用记录三个点的坐标,左下、左上、右下;测试集预测的时候,除了点的坐标还要输出这个框内可能是一个人的置信度(2)人很多、很密集、人很小的时候,因为人的身体多有重叠occlusion,在人头点一个红点,表示这是一个人。评估指标MetricsMAE是预测人数和真实人数的绝对误差,MSE是预测人数和真实人数的均方误差。
2023-04-28 20:32:21
4367
原创 人群计数主流创新方向梳理
Crowd counting的定义:Crowd counting is known as technique to count or estimate the total crowd present in in an image or a video stream.母任务:The goal of Object Counting is to count the number of object instances in a single image or vid
2023-04-28 19:15:58
2478
1
原创 图片人群计数模型代码运行指南
PaperWithCode 八大数据集模型排名:https://paperswithcode.com/task/crowd-counting。
2023-04-28 19:06:54
2662
Titanic 数据集分析
2023-11-07
79页多目标跟踪入门教程
2023-09-10
YOLOv8+目标追踪所需要用到的模型文件
2023-09-10
视频人群计数代码:YOLOv8+DeepSORT / ByteSORT / StrongSORT 目标识别+追踪+计数
2023-09-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人