【Matlab算法】梯度下降法(Gradient Descent)(附MATLAB完整代码)

本文介绍了梯度下降法作为优化算法的基本概念,包括选择初始点、计算梯度和更新参数的过程。详细展示了如何使用梯度下降法优化一个给定函数,并提供了伪代码和可运行的代码示例,讨论了随机梯度下降和批量梯度下降的变种。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

梯度下降法

梯度下降法是一种用于最小化函数的迭代优化算法。其基本思想是通过计算函数的梯度 (导数),找到函数的最小值点。在梯度下降法中,参数(或变量)沿着负梯度的方向进行更新,以降低函数值。

以下是梯度下降法的基本描述:

  1. 选择初始点: 选择一个初始点作为优化的起始点。
  2. 计算梯度: 在当前点计算函数的梯度(导数)。梯度是一个向量,包含每个变量的偏导数。
  3. 更新参数:沿着负梯度的方向调整参数。这个调整的步长由一个称为学习率的正数控制,学习率决定了每次更新参数的大小。
    参数 ( t + 1 ) =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Albert_Lsk

今天又能喝柠檬茶啦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值