前言
梯度下降法
梯度下降法是一种用于最小化函数的迭代优化算法。其基本思想是通过计算函数的梯度 (导数),找到函数的最小值点。在梯度下降法中,参数(或变量)沿着负梯度的方向进行更新,以降低函数值。
以下是梯度下降法的基本描述:
- 选择初始点: 选择一个初始点作为优化的起始点。
- 计算梯度: 在当前点计算函数的梯度(导数)。梯度是一个向量,包含每个变量的偏导数。
- 更新参数:沿着负梯度的方向调整参数。这个调整的步长由一个称为学习率的正数控制,学习率决定了每次更新参数的大小。
参数 ( t + 1 ) =