基于pyradiomics影像组学特征提取

本文详细介绍了如何在Python环境中使用PyRadiomics库进行影像组学特征提取,包括安装步骤、设置特征提取器(如图像类型、目标特征和提取器设置),以及提供了一个CT肺部特征提取的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

特征提取:

在这里,我们使用pyradiomics来提取影像组学特征。首先,我们先介绍pyradiomica工具包,然后我们进行特征的提取。

1 pyradiomics的使用:

PyRadiomics的官方文档:https://pyradiomics.readthedocs.io/en/latest/
image.png

1.1,在python环境下安装pyradiomics:

pip install pyradiomics

1.2,设置特征提取器,获得想要特征:

通过自定义特征提取器,可以根据自己的需求来设置并提取特征。
其实,需要设置两个方面:1,图像类型;2,所要提取的特征;3,提取器设置

1.2.1 图像类型

第一步:图像类型:首先,设置提取特征的图像类型,可以指定用于提取特征的图像类型。在pyradiomics包中为我们提供了许多可以使用的滤波器,所以我们可以使用原始图像及经过各种滤波器之后的图像,如下方表格。
具体可以参考官方:https://pyradiomics.readthedocs.io/en/latest/customization.html#image-types

图像类型 解释
Original 原始图像
Wavelet 小波变换。产生在三个维度中每个维度分别使用高通、低通滤波器的所有组合(LLH、LHL、LHH、HLL、HLH、HHL、HHH、LLL)
LoG Laplacian of Gaussian filter高斯滤波器的拉普拉斯算子,是一种边缘增强滤波器。使用它需要指定参数sigma,低 sigma 强调精细纹理,高 sigma 值强调粗糙纹理
Square 平方。取原始像素的平方并将它们线性缩放回原始范围
SquareRoot 平方根。取绝对图像强度的平方根并将它们缩放回原始范围
Logarithm 对数。取绝对强度 + 1 的对数,值缩放到原始范围
Exponential 指数。采用e^(绝对强度)获取强度的指数值,值被缩放到原始范围
Gradient 梯度。返回局部梯度的大小
LocalBinaryPattern2D 在每一片中进行的本地二进制模式
LocalBinaryPattern3D 在3d中进行的本地二进制模式

如何使用:
指定方式:设置特征提取器后可以在下边指定
可以直接使用:enableAllImageTypes() 启用所有类型
也可以使用:enableImageTypeByName( imageType , enabled=True , customArgs=None )启用你想用的类型
如:

# 所有类型
extractor.enableAllFeatures()
# 指定使用LoG和Wavelet滤波器
extractor.enableImageTypeByName('LoG')
extractor.enableImageTypeByName('Wavelet')

1.2.2 目标特征设置

第二步:目标特征设置
pyradiomics包也为我们提供了很多种可选的特征,如下表格所示:
具体可参考资料:https://pyradiomics.readthedocs.io/en/latest/features.html
这些特征主要包含:

  • 一阶特征 First Order Statistics (19 features)
  • 3D形状特征 Shape-based (3D) (16 features)
  • 2D形状特征 Shape-based (2D) (10 features)
  • 灰度级共生矩阵 Gray Level Co-occurrence Matrix (24 features)
  • 灰度级游程矩阵 Gray Level Run Length Matrix (16 features)
  • 灰度大小区域矩阵 Gray Level Size Zone Matrix (16 features)
  • 相邻灰度色调差异矩阵 Neighbouring Gray Tone Difference Matrix (5 features)
  • 灰度依赖矩阵 Gray Level Dependence Matrix (14 features)

下面展示一阶特征及其解释,更多的可以参考官方文档。

特征类型 特征 解释
First Order Features(共19个) Energy 能量
Total Energy 总能量
Entropy
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值