R语言实现双因素方差分析
双因素方差分析(Two-Way ANOVA)是一种统计方法,用于比较两个或多个因素对于一个连续型变量的影响。在R语言中,我们可以使用多种包来进行双因素方差分析,例如stats
、car
和afex
包。下面我将演示使用stats
包进行双因素方差分析的步骤,并提供相应的源代码。
首先,我们需要准备数据。假设我们有两个因素A和B,每个因素有两个水平。我们随机选择了16个样本,每个样本都有A和B的值以及一个连续型变量的观测值。
# 创建数据框
data <- data.frame(
A = rep(c("A1", "A2"), each = 8),
B = rep(c("B1", "B2"), times = 8),
Y = rnorm(16)
)
# 查看数据
print(data)
上述代码创建了一个包含三列的数据框,其中A列表示因素A的水平,B列表示因素B的水平,Y列表示连续型变量的观测值。我们使用rep
函数和rnorm
函数生成了模拟数据。
接下来,我们使用aov
函数执行双因素方差分析。该函数的参数为公式,其中使用~
符号表示因变量Y与自变量A和B的交互作用。
# 执行双因素方差分析
model <- aov(Y ~ A * B, data = data)
# 查看分析结果