趣味算法之泊松分酒

本文介绍了泊松分酒问题,即如何使用12品脱、8品脱和5品脱的酒瓶分出6品脱的酒。通过两种倒酒规则详细阐述了解决过程,并分析了问题的数学原理,涉及不定方程的求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有一个12品脱(pint)的酒瓶,里面装满葡萄酒,另有8品脱和5品脱的瓶子各一个。问如何从中分出6品脱的酒出来?

传说泊松年轻时成功解决了该问题,勾起了他对数学的兴趣而投身数学研究,因此该问题被称为泊松分酒问题。另外这个问题又被称为分油问题啦,分水问题啦等等。

小学的时候在一本《十万个问什么——数学卷》中看到过这个问题,那本书直接给出了一个解答过程,又没说原理,看得我糊里糊涂。

一 .  解答过程 

为了方便说明,将容量为12品脱,8品脱,5品脱瓶子分别称为大瓶子,中瓶子,小瓶子。按照下面2种规则中的如何一种可以解决这个问题:

第一套规则:

1. 大瓶子只能倒入中瓶子

2. 中瓶子只能倒入小瓶子

3. 小瓶子只能倒入大瓶子

4. 小瓶子只有在已经装满的情况下才能倒入大瓶子

5. 若小瓶子被倒空,则无论中瓶子是否满,应马上从中瓶子倒入小瓶子

之所以要规定倒酒的顺序是为了防止状态重复。而根据这5条规则,大瓶子每次倒入中瓶子的酒总是8品脱,小瓶子每次倒入大瓶子的酒总是5品脱。(请结合下面的表来理解这句话,理解这点很重要)

有了上面的规定后,倒酒的顺序就确定下来了:

12品脱瓶子 8品脱瓶子 5品脱瓶子  
12 0 0 初始状态
4 8(倒进) 0  
4 3 5(倒出)  
9
### 算法的 C++ 实现与解释 问题是经典的穷举法应用之一,主要通过模拟倒过程中的状态变化来解决问题。以下是基于引用的内容以及专业知识对该问题的详细解析。 #### 穷举法的核心思想 穷举法是一种依赖计算机强大计算能力的经典算法,适用于解决那些没有明显规律可循的问题[^2]。对于问题而言,可以通过枚举所有可能的状态转移路径找到最终解。 #### 问题描述 假设存在三个容器 A、B 和 C,别具有容量 `a`、`b` 和 `c` 升(其中 c 是目标容量),初始状态下只有 A 容器装满水,其余两个为空。目标是从 A 向 B 或 C 转移液体直到某个容器恰好含有目标体积 `c` 的液体为止。 #### 状态表示 为了便于编程实现,可以定义三元组 `(x, y)` 表示当前状态,其中: - `x`: 当前容器 B 中的水量; - `y`: 当前容器 C 中的水量。 初始状态为 `(0, 0)`,即两容器均为空;终止条件则为任意时刻满足其中一个容器内的水量等于目标值 `c`。 #### 关键操作析 根据题目设定,在每次操作过程中允许执行以下几种基本动作: 1. 将 A 的全部内容倒入 B 或者 C 直至后者满载或者前者清空; 2. 把 B 的部或整体转移到 C 反之亦然; 3. 清空任一非零存量的目标容器重新开始尝试填充其他对象直至达成预期结果为止。 这些逻辑可以用简单的数学关系表达出来并结合实际物理约束加以限制从而形成完整的解决方案框架如下所示: ```cpp #include <iostream> #include <queue> using namespace std; struct State { int a, b; }; bool visited[201][201]; // Assuming max capacity is less than or equal to 200 liters. void bfs(int capA, int capB, int target) { queue<State> q; State start = {capA, 0}; q.push(start); memset(visited, false, sizeof(visited)); visited[start.a][start.b] = true; while (!q.empty()) { State current = q.front(); q.pop(); if (current.a == target || current.b == target){ cout << "Solution found!" << endl; break; } vector<State> nextStates{ {0, current.b}, // Empty A. {current.a, 0}, // Empty B. {min(capA, current.a + current.b), ((current.a + current.b) > capA)?((current.a + current.b)-capA):0 },// Pour from B into A until A full. {(current.a + current.b >= capB)?(current.a-(capB-current.b)):0 , min(capB,(current.a+current.b))} //Pour from A into B untill B full. }; for(auto s :nextStates ){ if(!visited[s.a][s.b]){ visited[s.a][s.b]=true; q.push(s); } } } } int main(){ int A,B,C; cin>>A>>B>>C; bfs(A,B,C); } ``` 上述代码实现了利用广度优先搜索(BFS)方法寻找最短路径到达特定状态的功能[^3]^。这里采用了队列数据结构存储待访问节点,并借助二维布尔数组记录已探索过的组合防止重复处理相同情形造成死循环现象发生。 #### 结论 综上所述,通过对这一典型例子的学习我们可以发现即使面对看似复杂棘手的实际应用场景只要合理运用诸如穷举之类的通用技术手段同样能够有效应对各种挑战获得满意的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值