机器学习--sklearn的常见使用

本文介绍了如何使用sklearn库进行机器学习,特别是朴素贝叶斯和SVM的支持向量机。首先,通过GaussianNB实现朴素贝叶斯模型,训练并预测数据,计算预测准确率。接着,使用SVC构建支持向量机模型,调整C参数和核函数,展示了训练和预测的时间消耗,并得出预测准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# 朴素贝叶斯
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()          #训练模型
clf.fit(features_train,labels_train)     
pred = clf.predit(features_test)        #给出测试变量,预测结果

from sklearn.metrics import accuracy_score
accuracy = accuracy_score(pred, labels_test)   # 预测准确率

#-------------------------------------------------------------------------------------------
# SVM支持向量机,可以通过减少训练集的大小来减少运行时间(牺牲准确率)
from sklearn.svm import SVC

clf = SVC(C=10000,kernel='rbf')     # C的大小决定拟合程度,kernel是核函数,有linear\rbf\polynomial等
t0 = time()                          # C越大越好,但是可能会过拟合
clf.fit(features_train,labels_train)
print "train time is :" , round(time()-t0, 3), "s"    

t0 = time()
pred = clf.predict(features_test)
print "fit time is :" , round(time()-t0,3), "s"
#print pred[10],pred[26],pred[50]               # 得出第10/26/50的预测结果

from sklearn.metrics import accuracy_score
acc = accuracy_score(pred, labels_test)
print acc                                      # 准确率

#--------------------------------------------------------------------------------------------




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值