【Pandas】datetime转换到string的三种方法

文章介绍了在Python中将datetime.now().date()转换为字符串的三种方式:.isoformat(),f-string以及.strftime(),并强调了.strftime()方法的灵活性,因为它允许自定义日期格式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

建立一个datetime.now().date()

from datetime import datetime, timedelta
datetime.now().date()

datetime.now().date()的输入和输出:Alt

1. 第一种转换成str的方法:.isoformat()

from datetime import datetime, timedelta
datetime.now().date().isoformat()

datetime.now().date().isoformat()的输入和输出:Alt

2. 第二种转换成str的方法:f’{}’

f字符串的各种用例

from datetime import datetime, timedelta
f'{datetime.now().date()}'

f’{datetime.now().date()}'的输入和输出:在这里插入图片描述

3. 第三种转换成str的方法:.strftime()

from datetime import datetime, timedelta
datetime.now().date().strftime('%Y-%m-%d')

.strftime(‘%Y-%m-%d’)的输入和输出:在这里插入图片描述

除了’%Y-%m-%d’(‘2023-05-26’)这种格式,.strftime()还可以有多种格式,比如’%Y/%m/%d’(‘2023/05/26’):在这里插入图片描述

总结

三种方法均可将datetime转换为str,但最灵活的是.strftime(),因为日期格式可以自定义,而其他两种的格式都是’%Y-%m-%d’(‘2023-05-26’)

### 将字符串类型转换为日期时间类型的通用方法 在不同编程语言中,将`string`类型的数据转换为`datetime`类型有不同的实现方式。 #### C# 对于C#而言,可以利用`Convert.ToDateTime()`或`DateTime.Parse()`来完成这一操作。当处理格式固定的日期字符串时,这两种方法都非常有效[^1]: ```csharp using System; string dateString = "2011-03-06"; DateTime dateConverted; try { dateConverted = Convert.ToDateTime(dateString); } catch (FormatException e) { Console.WriteLine($"Format exception occurred: {e.Message}"); } // 或者使用 Parse 方法 try { dateConverted = DateTime.Parse(dateString); } catch (FormatException e) { Console.WriteLine($"Parse failed with message: {e.Message}"); } ``` 值得注意的是,在遇到不符合预期格式的输入时,上述两种方法都会抛出异常,因此建议加入异常捕获机制以增强程序健壮性。 #### Python Python提供了灵活的方式来进行类似的转换工作。通过导入`datetime`模块中的相应类,可轻松地把表示时间的字符串解析成`datetime`对象[^2]: ```python from datetime import datetime date_string = '2023-09-18' format_str = '%Y-%m-%d' # The format of the input string. converted_date = datetime.strptime(date_string, format_str) print(converted_date) ``` 此段代码展示了如何指定特定的时间格式符(`%Y`, `%m`, `%d`)以便更精确地匹配源字符串结构并成功创建对应的`datetime`实例。 #### Pandas库的应用场景 而在数据分析领域常用的Pandas库也支持批量处理此类转换需求。特别是针对CSV文件或其他表格型数据集内的列字段,可以直接调用`.to_datetime()`函数进行高效化[^3]: ```python import pandas as pd df = pd.DataFrame({'dates': ['20/07/2022', '21/07/2022']}) df['dates'] = pd.to_datetime(df['dates'], dayfirst=True) print(df.dtypes) ``` 这段脚本不仅实现了单个值到`datetime`类型的变,还适用于整个DataFrame对象的一列或多列数据的同时转换,并允许设定额外参数如`dayfirst`来自定义解释顺序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Allan_lam

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值