-
python
-
anaconda
-
numpy
import numpy as np A = np.array([1,2,3,4]) #数组的形状 A.sharp #数组元素的数据类型 A.dtype #数组的维数 np.ndim(A) #最大值 np.maximum(1,2)
-
matplotlib
-
import numpy as np import matplotlib.pyplot as plt x = np.arange(0, 10, 0.1) y1 = np.sin(x) y2 = np.cos(x) # y3= x*x plt.plot(x, y1,label="sin") plt.plot(x, y2,linestyle="--",label="cos") # plt.plot(x, y3,label="x*x") plt.xlabel("x") plt.ylabel("y") plt.title("Sine and Cosine") plt.legend() plt.show()
from matplotlib.image import imread
-
-
向量,张量,矩阵
- 向量:一维数组
- 矩阵:二维数组
- 张量:一般化之后的向量或矩阵等统称。
- 多维数组
-
-
感知机(perceptron)
-
神经网络
-
激活函数
- 将输入信号总和转换为输出信号的函数
- 是连接感知机和神经网络的桥梁
- 感知机使用阶越函数作为激活函数
- 以阈值为界,一旦输入超过阈值,就切换输出
- 神经网络的激活函数必须使用非线性函数,因为使用线性函数的话,加深神经网络的层数就没有意义了
- 线性函数的问题在于,不管如何加深层数,总是存在与之等效的“无隐藏层的神经网络”。
-
阶越函数,
- h ( x ) = { 1 , x > 0 0 , x ≤ 0 h(x)=\begin{cases} 1,x>0\\ 0,x\leq0 \end{cases} h(x)={1,x>00,x≤0
-
sigmoid函数,
- h ( x ) = 1 / ( 1 + e x p ( − x ) ) h(x)=1/(1+exp(-x)) h(x)=1/(1+exp(−x))
-
ReLU函数
-
在输入大于0时,直接输出该值;在输入小于0时,输出0
-
h ( x ) = { x , x > 0 0 , x ≤ 0 h(x)=\begin{cases} x,x>0\\ 0,x\leq0 \end{cases} h(x)={x,x>00,x≤0
-
-
《深度学习入门》笔记
于 2024-11-04 10:29:31 首次发布