《深度学习入门》笔记

  1. python

    1. anaconda
    2. numpy
      import numpy as np
      
      A = np.array([1,2,3,4])
      #数组的形状
      A.sharp
      #数组元素的数据类型
      A.dtype
      #数组的维数
      np.ndim(A)
      
      #最大值
      np.maximum(1,2
    3. matplotlib
      • import numpy as np
        import matplotlib.pyplot as plt
        
        x = np.arange(0, 10, 0.1)
        y1 = np.sin(x)
        y2 = np.cos(x)
        # y3= x*x
        
        plt.plot(x, y1,label="sin")
        plt.plot(x, y2,linestyle="--",label="cos")
        # plt.plot(x, y3,label="x*x")
        plt.xlabel("x")
        plt.ylabel("y")
        plt.title("Sine and Cosine")
        plt.legend()
        plt.show()
        
        from matplotlib.image import imread
        
    4. 向量,张量,矩阵

      • 向量:一维数组
      • 矩阵:二维数组
      • 张量:一般化之后的向量或矩阵等统称。
      • 多维数组
  2. 感知机(perceptron)

    1. 神经元,节点
    2. 权重,偏置
    3. 与门,与非门,或门实现
    4. 多层叠加异或门实现
    5. 线性函数,非线性函数,线性空间,非线性空间
    6. h ( x ) = { 0 , ( b + w 1 x 1 + w 2 x 2 ≤ 0 ) 1 , ( b + w 1 x 1 + w 2 x 2 > 0 ) h(x)=\begin{cases} 0,(b+w_1x_1+w_2x_2\leq0) \\ 1,(b+w_1x_1+w_2x_2>0) \end{cases} h(x)={0(b+w1x1+w2x20)1(b+w1x1+w2x2>0)

  3. 神经网络

    • 激活函数
      • 将输入信号总和转换为输出信号的函数
      • 是连接感知机和神经网络的桥梁
      • 感知机使用阶越函数作为激活函数
        • 以阈值为界,一旦输入超过阈值,就切换输出
      • 神经网络的激活函数必须使用非线性函数,因为使用线性函数的话,加深神经网络的层数就没有意义了
      • 线性函数的问题在于,不管如何加深层数,总是存在与之等效的“无隐藏层的神经网络”。
    • 阶越函数,

      • h ( x ) = { 1 , x > 0 0 , x ≤ 0 h(x)=\begin{cases} 1,x>0\\ 0,x\leq0 \end{cases} h(x)={1x>00x0
    • sigmoid函数,

      • h ( x ) = 1 / ( 1 + e x p ( − x ) ) h(x)=1/(1+exp(-x)) h(x)=1/(1+exp(x))
    • ReLU函数

      • 在输入大于0时,直接输出该值;在输入小于0时,输出0

      • h ( x ) = { x , x > 0 0 , x ≤ 0 h(x)=\begin{cases} x,x>0\\ 0,x\leq0 \end{cases} h(x)={xx>00x0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值