现如今,企业业务规模不断扩大和数字化转型加速,数据量呈爆炸式增长。在这个过程中,新的业务系统不断上线,旧系统未及时淘汰,使得数据源头日益增多,数据流转路径错综复杂,加之技术架构的多样性和数据标准、类型、口径的差异性等,共同造成了重复资产的产生。
例如,一家快速扩张的企业,在发展初期为了满足不同业务部门的需求,分别建立了多个独立的销售和库存管理系统。随着业务增长,这些系统之间的数据未能有效整合,导致客户信息、商品库存等数据出现大量重复,不仅占用存储资源,还影响了数据分析的准确性和业务决策的效率。
所以,重复资产的存在,导致众多企业面对着“数据”这座金山,不得不经受着“千淘万漉”的痛苦,特别是“找不到有价值数据”,使得很多数据开发人员,一面投入大量精力进行数据研发,工作繁重苦不堪言,一面还要面对业务用数不满意的评价。
在我们的调研中发现,企业对重复资产识别的需求愈加强烈,其中在业务端,通过字段口径找出相似表,有一套解决方案满足以下场景尤为迫切。
识别集市层不同表的公共部分(下沉集市层表的公共逻辑)
这一过程不仅限于简单地找出表之间的共同字段或结构,更重要的是要深入理解这些表在业务逻辑上的共通之处。通过深入分析集市层中“表 1、表 2、表 3”等及其下属多层表的字段、计算逻辑以及数据流转路径,可以精准地提炼出这些表在数据处理、业务规则应用上的共同特征。
这些公共逻辑一旦识别并下沉到公共层,将极大地简化后续的数据处理流程,提升数据处理的标准化和一致性,进而促进公共层的广泛利用,减少数据冗余和重复计算。例如发现集市层的相似表(偏向于集市层的 ODS 层),且来自于同一个 b.data 的表,通过去重汇总一个 p.data 的表。
识别集市层的表与公共层的表的重复度(提高公共层的复用)
这一步骤旨在优化数据架构,减少不必要的数据复制和存储开销。通过比对直接引用 b.data 的集市层表与 p.data 中已存在的表,不仅要找出结构上的相似性,更要评估数据内容、业务含义以及数据使用场景的重合度。
这一分析能够揭示哪些集市层表实际上是公共层已有表的重复或变种,进而指导企业将这些表迁