剩余静校正相关

这篇博客探讨了剩余静校正的概念,包括背景知识、道集实例、局部与全局剩余静校正的详细解释。作者介绍了局部静校正的优化目标和时间复杂度,以及全局剩余静校正面临的挑战,提出使用遗传算法作为一种可能的解决方案。文章还讨论了在大数据量下的求解难度以及学习到的半监督学习和多视角学习方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

剩余静校正

主要将在这里介绍自己的工作,包括工作的具体情况与之后的规划(仅供个人观看,其它人可忽略)。

背景知识

1. 一对<炮点, 检波器> 获得的数据,反映了炮点与检波器中间位置垂直方向的地质信息。该数据称为一个道(trace),可表示为长度等于 n n n的实数向量,其中每个分量表示相应时间(可换算为深度)的振幅。

2. 对应于同一地理位置的 k k k个道组成一个道集(trace set),可表示为 n × k n \times k n×k 的矩阵。

3. 为了获得该条直线上的整体地质信息,经常需要对多个点进行观察,假设该地面上有 d d d 个点,最终结果则是一个三维矩阵 V V V
V 3 = ( v l i j ) d × n × k (1) V_3 = (v_{lij})_{d \times n \times k} \tag{1} V3=(vlij)d×n×k(1)

4. 为了获得某个区域的整体地质信息,需要对多条直线进行观察。若该区域一共有 m m m 条直线可供观察,最终结果会变成四维矩阵。
V 4 = ( v g l i j ) m × d × n × k (2) V_4 = (v_{glij})_{m \times d \times n \times k} \tag{2} V4=(vglij)m×d×n×k(2)

道集的实例

1. 假设在某一个地区的一条直线 s s s 上一共有 d 个点 P = ( p 1 , … , p d ) P = (p_1, \dots, p_d) P=(p1,,pd),其中每一个点都有固定的偏差 O = ( o 1 , … , o d ) O = (o_1, \dots, o_d) O=(o1,,od) o d o_d od 为实数。则某一道 trace (由第 i i i 和第 j j j 个点产生) 与标准模型的偏差 o i j o_{ij} oij 由 (3) 式决定。
o i j = o i + o j (3) o_{ij} = o_i + o_j \tag{3} oij=oi+oj(3)

2. 假设我们现在对第 5 个点 p 5 p_5 p5 进行观察,每 0.1s 接收一次振幅波动,那么在 1s 之后就会获得长度 n = 10 n = 10 n=10 的一个 trace,具体如下表 (该道的偏差为 o 19 = 0 o_{19} = 0 o19

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值