02.anaconda如何配置

1、下载

 在官网下载anaconda之后会得到这一个.exe文件,

下载:www.anaconda.com/download/

2、安装

双击打开安装,过程中注意几个点:

1)选择all users

2)如果不想c盘爆红的话,选择其他盘,小编这里选择的是b盘,保底5个G

3)这几个全选

4)下面这两个不用选,是打开导航和分布式教程

3、设置系统环境变量

控制面板>>系统和安全>>系统>>高级系统设置>>环境变量>>系统变量>>双击path

你们的自行改一下

B:\anaconda
B:\anaconda\Scripts
B:\anaconda\Library\bin
B:\anaconda\Library\mingw-w64\bin 

4、查看版本号

conda --version

5、修改下载位置

在anaconda prompt中输入:

conda config --set show_channel_urls yes

然后在>>此电脑>>C盘>>用户>>用户名下,找到.condarc,用.txt打开

 

把里面的内容换成下载路径:

envs_dirs:
  - B:\Anaconda_envs\envs
pkgs_dirs:
  - B:\Anaconda_envs\pkgs

 6、镜像源设置:conda config --add channels

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
 
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/free/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/main/
 
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/

conda config --set show_channel_urls yes

7、查看信息:conda info

 conda info

 1)镜像源下载了

2)安装包的位置也在我们设置的PATH里面:

7、镜像源卸载 conda config --remove channels

 conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
 
conda config --remove channels https://mirrors.aliyun.com/anaconda/pkgs/free/
conda config --remove channels https://mirrors.aliyun.com/anaconda/pkgs/main/
 
conda config --remove channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --remove channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --remove channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --remove channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --remove channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
conda config --remove channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/

<think>嗯,用户遇到了在Windows 64位平台上用conda安装torch==2.1.0和torchtext==0.16.0时的PackagesNotFoundError问题。我需要帮他们解决这个问题。首先,我得考虑可能的原因。常见的可能包括渠道不正确、版本不兼容或者CUDA版本的问题。 首先,用户提供的引用中有三个安装命令,比如引用[1]是安装PyTorch 2.1.0和对应版本的torchvision、torchaudio,用的是CUDA 12.1。用户想安装的是torchtext==0.16.0,这可能和PyTorch 2.1.0配套。但需要确认这些版本是否在conda的渠道中存在,特别是win-64平台。 可能的步骤:首先建议用户检查conda的渠道是否正确添加了pytorch和nvidia的渠道。因为安装命令中有-c pytorch -c nvidia,所以用户需要确保这些渠道已经正确配置。有时候,用户可能没有添加这些渠道,或者优先级不对,导致conda找不到包。 其次,可能需要明确指定平台和版本。比如,在conda install命令中指定平台为win-64,或者使用严格的版本号。例如,使用conda install pytorch==2.1.0 torchtext==0.16.0 -c pytorch -c nvidia。但有时候,即使这样也可能出现找不到的情况,因为可能这些包不在默认的渠道里。 另外,CUDA版本的兼容性也是一个关键点。用户需要确认他们的系统是否安装了对应的CUDA驱动。根据引用[3],安装CUDA 12.1可能需要特定的步骤,比如下载run文件,配置环境变量等。如果用户的CUDA版本不匹配,可能会导致conda无法找到对应的PyTorch版本。比如,PyTorch 2.1.0可能需要CUDA 12.1,而如果用户系统是CUDA 11.x,可能需要安装不同的PyTorch版本。 另外,检查可用包是否存在。可以通过conda search命令来查看是否有对应的版本。例如,运行conda search pytorch==2.1.0 --channel pytorch --channel nvidia,查看是否有win-64的包。如果没有的话,可能需要使用pip安装,或者从其他渠道获取。 有时候,PyTorch的某些版本可能只通过pip发布,而conda的渠道可能没有。这时候需要用户使用pip install,但需要注意conda环境和pip的混合使用可能会导致依赖冲突。不过用户可能更倾向于使用conda,所以需要优先考虑conda的解决方案。 另外,torchtext的版本需要和PyTorch版本兼容。PyTorch 2.1.0对应的torchtext版本是否为0.16.0,需要确认官方文档或者发布说明。如果版本不匹配,可能需要调整安装的版本号。 可能还需要检查系统环境,比如Python版本。PyTorch 2.1.0可能只支持特定的Python版本,比如3.8到3.11之间。如果用户的Python版本太旧或太新,可能需要创建新的conda环境。 总结下来,解决方案步骤可能包括: 1. 添加正确的conda渠道,如pytorch和nvidia,并优先使用它们。 2. 明确指定包版本和渠道,确保CUDA版本匹配。 3. 检查包是否存在,或者尝试使用pip安装。 4. 创建新的conda环境,指定Python版本。 5. 验证CUDA安装和配置是否正确。</think>以下是在Windows 64位平台上通过conda安装PyTorch 2.1.0和torchtext 0.16.0的详细步骤: ### 一、验证CUDA兼容性 PyTorch 2.1.0需要CUDA 12.1支持。先通过控制台执行: ``` nvidia-smi ``` 确认驱动版本≥530.30.02(对应CUDA 12.1)[^3]。若版本过低需更新驱动或选择兼容旧CUDA版本的PyTorch组合。 ### 二、创建专用虚拟环境 ``` conda create -n torch21 python=3.10 # 官方推荐Python 3.8-3.11 conda activate torch21 ``` ### 三、执行安装命令 ``` conda install pytorch==2.1.0 torchtext==0.16.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia ``` - 必须显式指定`pytorch-cuda=12.1`确保选择CUDA编译版本 - 渠道优先级顺序:`-c pytorch`优先于默认渠道[^1] ### 四、验证安装结果 ```python import torch print(torch.__version__) # 应输出2.1.0 print(torch.cuda.is_available()) # 应返回True ``` ### 五、备选方案(若仍报错) 若持续出现`PackagesNotFoundError`,建议: 1. 清理conda缓存 ``` conda clean --all ``` 2. 尝试指定平台架构 ``` conda install pytorch==2.1.0 ... --channel pytorch --override-channels --strict-channel-priority ``` 3. 改用pip安装(需先安装对应CUDA Toolkit) ``` pip install torch==2.1.0+cu121 torchtext==0.16.0 --extra-index-url https://download.pytorch.org/whl/cu121 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值