本文以BeautifulSoup作为html内容定位工具,展现网页数据初级抓取过程。数据来源为豆瓣读书TOP250书单[https://book.douban.com/top250],共10页,单页25部书籍,抓取字段为书名、作者、出版时间、出版价格、豆瓣评分、评分人数、书中引言。内容示例:
“红楼梦,[清] 曹雪芹 著,1996-12,59.70元,9.6,447047,都云作者痴,谁解其中味?”
废话不多说,我们开始爬取~
#全过程代码展示
import requests
from fake_useragent import UserAgent as ua
from bs4 import BeautifulSoup
import time
import random
import csv
import re
import pandas as pd
#设计函数 下载单页内容至csv文件
def download_page(baseurl, PageNum):
time.sleep(random.uniform(0.1,2)*2) #随机延迟
header1 = {
'User-Agent': ua().random,
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Referer': 'https://www.bing.com/'
}
param1 = {'start': PageNum}
with requests.get(baseurl, headers=header1, params=param1, timeout=(10, 50)) as resp1:
html1 = resp1.text
soup = BeautifulSoup(html1, 'html.parser')
#单页书籍信息汇总
items = soup.find('div', attrs={'class':"indent"}).find_all('tr', class_ = "item")
#遍历获取单本书籍信息
for item in items:
#书名
title1 = item.find('a', title = re.compile(r'[0-9a-zA-Z\u4e00-\u9fa5]+')).text