LSTM模型

概念

LSTM:长短期记忆细胞神经网络

长短期记忆网络是一种时间递归神经网络,适合处理和预测时间序列中间隔和延迟相对较长的重要事件。

使用遗忘门的LSTM适用于连续性的预测。

LSTM避免了RNN(循环神经网络)网络的梯度消失和梯度爆炸问题。
LSTM 使用记忆单元代替神经元。

组成

一个LSTM单元由一个记忆细胞 CtC_tCt 和三个门结构组成(输入门 iti_tit 、遗忘门 ftf_tft、输出门 oto_tot).

在 t 时刻,xtx_txt代表输入数据,hth_tht代表隐藏层。XXX代表向量外积,+++代表叠加运算。公式如下:

ft=σ(Ufxt+Wfht−1+bf)it=σ(Uixt+Wiht−1+bi)ut=tanh⁡(Uuxt+Wuht−1+bu)ct=ft∗ct−1+it∗utot=σ(Uoxt+Woht−1+bo)ht=ot∗tanh⁡(ct) \begin{aligned} &f_t = \sigma(U_fx_t + W_fh_{t-1}+ b_f)\\ &i_t = \sigma (U_ix_t+W_ih_{t-1}+b_i)\\ &u_t = \tanh(U_ux_t+W_uh_{t-1}+b_u)\\ &c_t = f_t*c_{t-1} + i_t * u_t \\ &o_t = \sigma(U_ox_t + W_oh_{t-1}+b_o)\\ &h_t = o_t * \tanh(c_t) \end{aligned}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ambrosedream

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值