OpenCV图像边缘检测

一、Canny边缘检测的一般步骤

1.使用高斯滤波器,以平滑图像,滤除噪声;

2.计算图像中每个像素点的梯度强度和方向;

3.应用非极大值抑制,以消除边缘检测带来的杂散效应;

4.应用双阈值检测来确定真实的和潜在的边缘;

5.通过抑制孤立的弱边缘最终完成边缘检测。

二、梯度强度和方向的计算

G=\sqrt{G_{x}^{2}+G_{y}^{2}} \ \ \ \ \ \ \Theta =arctan(\frac{G_{x}}{G_{y}})

三、关于非极大值抑制

1.方法一

2.方法二

四、双阈值检测

五、OpenCV接口实现

import cv2
import matplotlib.pyplot as plt
import numpy as np

img = cv2.imread('./noisy.jpg', cv2.IMREAD_GRAYSCALE)

#滤波
img = cv2.medianBlur(img, 3)

v1 = cv2.Canny(img, 80, 150)
v2 = cv2.Canny(img, 50, 100)

plt.figure()
plt.subplot(1, 3, 1)
plt.imshow(img, 'gray')
plt.title('ORIGINAL')

plt.subplot(1, 3, 2)
plt.imshow(v1, 'gray')
plt.title('V1')

plt.subplot(1, 3, 3)
plt.imshow(v2, 'gray')
plt.title('V2')

plt.show()

canny

 

 

 

 

 

OpenCV是一个开源的计算机视觉库,提供了丰富的图像处理和计算机视觉算法。其中,图像边缘检测OpenCV中的一个重要功能,用于检测图像中物体的边缘。 在OpenCV中,常用的图像边缘检测算法有以下几种: 1. Canny边缘检测算法:Canny算法是一种经典的边缘检测算法,它通过多阶段的处理来提取图像中的边缘。首先,对图像进行高斯滤波以降噪声;然后,计算图像的梯度,并根据梯度的方向和幅值来确定边缘;最后,使用非极大值抑制和双阈值处理来提取最终的边缘。 2. Sobel算子:Sobel算子是一种基于梯度的边缘检测算子,它通过计算图像的一阶或二阶导数来检测边缘。Sobel算子可以分别计算图像在水平和垂直方向上的梯度,并将两个方向上的梯度合并得到最终的边缘。 3. Laplacian算子:Laplacian算子是一种基于二阶导数的边缘检测算子,它可以检测出图像中的高频变化区域,即边缘。Laplacian算子对图像进行二阶导数计算,并通过零交叉点来确定边缘。 使用OpenCV进行图像边缘检测的步骤如下: 1. 读取图像:使用OpenCV的函数读取图像文件。 2. 灰度化:将彩色图像转换为灰度图像,可以使用OpenCV的函数将图像转换为灰度模式。 3. 滤波处理:对灰度图像进行滤波处理,常用的滤波方法有高斯滤波。 4. 边缘检测:使用OpenCV提供的边缘检测函数,如Canny、Sobel或Laplacian等。 5. 显示结果:将检测到的边缘结果显示出来,可以使用OpenCV的函数将图像显示在窗口中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值