马尔可夫不等式和切比雪夫不等式

本文介绍了概率论中的两个重要不等式——马尔可夫不等式和切比雪夫不等式。马尔可夫不等式表明,对于非负随机变量X,其大于等于a的概率不超过期望值的a倍。通过简单的证明和直观解释,文章展示了不等式的应用。接着,文章利用马尔可夫不等式证明了切比雪夫不等式,该不等式指出,随机变量X与其均值μ之差的绝对值大于c的概率不超过c的平方除以方差σ的平方。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Markov’s Inequality

中文叫马尔科夫不等式或马尔可夫不等式。

若随机变量XXX只取非负值,则∀a>0\forall a>0a>0,有
P(X≥a)≤E(X)a \mathbb{P} (X\ge a) \le \dfrac{\mathbb{E}(X)}{a} P(Xa)aE(X)

证明
Ya=aI(X≥a)Y_a=a\mathbb{I}(X\ge a)Ya=aI(Xa),则必有Ya≤XY_a\le XYaX,进而有E(Ya)≤E(X)\mathbb{E}(Y_a)\le \mathbb{E}(X)E(Ya)E(X)


E(Ya)&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值