我们都知道,AI能够在理解和生成语言方面做得很好。但是,如何让机器理解我们的需求,给出正确的回答呢?这就需要用到–提示词(prompt)。
所谓提示词,简单来说就是一种指令,就像你在搜索引擎中输入关键词,prompt会根据你的问题提供最合适的答案。写出好的提示词,并不需要高超的编程技巧,也不需要复杂的算法知识,只需要最直接,最真实的人类语言,去提问,设定你的大模型,一个好的prompt可以让你的大模型变成一个风趣幽默的诗人,或是变成一个思维敏捷的知识分子,或是变成你理想的生活助手,只需要一点点创新,就能让AI改变你的世界。
prompt是什么
简单来说,prompt就是你对大模型的输入,当你使用deepseek时,你在输入框里面输入的内容,就是一个简单的prompt:
但是一般我们这样的提问,得到的回答也是最普遍的,是非限定的,让我们来优化一下,设定一个我们想要了解的范围:
优化前:
优化后:可以明显看出,优化后的prompt更符合需求,所以在大模型领域,为了不断优化prompt,为此衍生出了prompt工程。prompt工程会针对不同的场景和需求下,制定最合适的提示词语言,最大程度的发挥大模型的能力。
prompt的基本框架
明确prompt的定义与作用
提示词是告诉AI模型要做什么任务的关键信息。它不仅仅是单个词语,而是一组词汇、句子或段落,用于引导AI生成符合预期的输出。
好的prompt应具备以下特点:
- 明确任务类型:如问答、摘要、分类、文本生成等。
- 提供足够上下文:帮助模型理解任务背景和需求。
- 设定输出/回复的格式:如列表、段落、表格、JSON等。
同时在写prompt应遵循以下原则:
-
清晰具体: 提示词应避免模糊不清的表达,确保模型能准确理解你的意图。
-
重点突出: 突出任务的核心要求,避免冗余信息干扰模型判断。
-
充分详尽: 提供完成任务所需的主要信息,尤其是涉及专业术语或复杂场景时。
-
易于理解: 好的提示词应该像对一个初学者解释一样清楚,不需要额外追问。
回顾之前的简单提问,我们看下下面的优化和对比:
问题类别 | 优化前 | 优化后 |
---|---|---|
知识技术 | 如何学习React? | 作为一名前端开发者,如何在 2 个月内高效掌握 React?请提供学习路径、关键知识点和实战项目建议。 |
职业发展 | 怎么提高职场竞争力 | 对于一名 30 岁的前端开发者,如何提升在大厂的竞争力?请结合技术、软技能和人脉拓展三个方面回答,输出为表格对比格式。 |
决策建议 | 我该换工作吗? | 如何评估当前工作是否值得继续?请从 ‘薪资增长’、‘职业发展’ 和 ‘工作满意度’ 三个角度提供分析方法。 |
优化后的提示词输入输入给大模型,往往得到到的答案要精细许多。
使用结构化方法提升prompt质量
CO-STAR原则(结构化提示词方法)
CO-STAR原则是结构化提示词中的一种,由新加坡政府科技局数据科学与AI团队创立,是一个非常实用且易于上手的提示构建工具。CO-STAR的设计初衷是为了帮助用户在使用大型语言模型时,能够构建出更加完整和有效的提示词,从而提高AI生成内容的相关性和效果。包括以下要素:
- Context(背景): 说明任务的背景信息。
- Objective(目标): 明确你希望模型完成的任务。
- Style(风格): 指定输出的语气、格式或风格。
- Tone(语气): 决定输出的正式程度或情感倾向。
- Audience(受众): 描述目标读者的特征,如专家、学生、儿童等。
- Response(响应): 规定输出的形式,如列表、段落、代码等。
举个例子,例如我们向大模型提问:写一篇关于人工智能在金融领域应用的文章,在不使用CO-STAR原则的情况下,回答是这样的:
“人工智能在金融领域有很多应用。比如,AI可以帮助银行分析客户数据,提供个性化服务。此外,AI还可以用于风险管理,预测市场变化。未来,AI可能会在金融领域发挥更大的作用。”
这段回答的问题主要是:
- 内容过于笼统,缺乏深度和结构。
- 未明确目标读者和语言风格,导致输出不够专业。
下面,使用CO-STAR原则来优化prompt:
Context(背景):人工智能(AI)正在金融领域快速发展,应用于风险管理、投资分析和客户服务等多个方面。
Objective(目标):写一篇800字的文章,介绍AI在金融领域的应用,并分析其优势和挑战。
Style(风格):语言专业但不晦涩,适合普通读者阅读。
Tone(语调):中立、客观,略带对技术发展的积极态度。
Audience(受众):目标读者是对金融科技感兴趣的专业人士和学生。
Response(回应):文章应包括以下部分:
引言:简要介绍AI在金融中的重要性。
应用场景:列举3个具体应用场景(如风险管理、投资分析、客户服务),并分别说明其价值和挑战。
未来展望:分析AI在金融领域的未来发展趋势,并提出2-3个潜在突破点。
结论:总结AI对金融行业的影响,并呼吁加强相关技术研发和监管。
我们先把这段话prompt发给大模型,然后再次进行提问,得到的回答就会更加具体:
人工智能在金融领域的应用与未来展望
引言
人工智能(AI)正在深刻改变金融行业,从风险管理到客户服务,AI技术的应用为金融机构带来了前所未有的机遇。随着数据量的爆炸式增长和计算能力的提升,AI在金融中的应用前景愈发广阔。
应用场景
风险管理:AI通过分析历史数据和实时市场信息,能够预测潜在风险并制定应对策略。例如,AI在信用评分和欺诈检测中的应用显著提高了金融机构的安全性。然而,模型的可解释性和数据隐私问题仍是主要挑战。
投资分析:AI驱动的算法能够快速分析海量数据,为投资者提供精准的投资建议。例如,量化交易中AI模型的表现已超过传统方法。但市场波动和模型过拟合问题仍需关注。
客户服务:AI聊天机器人和虚拟助手能够提供24/7的客户支持,提升用户体验。然而,处理复杂问题和情感理解仍是技术瓶颈。
未来展望
未来,AI在金融领域的应用将更加广泛和深入。首先,AI与区块链技术的结合有望实现更安全的金融交易。其次,AI驱动的个性化金融服务将进一步提升客户满意度。最后,监管科技(RegTech)的发展将帮助金融机构更好地遵守法规。
结论
人工智能正在重塑金融行业,为机构、投资者和客户带来巨大价值。然而,技术的快速发展也带来了伦理和监管挑战。我们呼吁加强AI技术的研发,同时建立完善的监管框架,确保AI在金融领域的应用造福全社会。”
这样的回答是符合提问的最初设定的,而且更加有条理,内容上显得也会专业一些。
prompt在Agent和工作流中的应用
在目前市场上的大模型应用平台中,通过配置不同的prompt来设定工作流中的大模型节点的能力,已经成为实现灵活任务编排和智能决策的核心技术手段。这种能力使得大模型能够无缝嵌入到复杂的工作流中,执行多样化的任务,同时保持高度的可定制性和适应性。
prompt 在工作流中的作用
prompt 是用户输入给大模型的指令或问题,用于引导模型生成特定类型的输出。在工作流中,Prompt 的作用包括:
- 任务定义: 通过 prompt 明确大模型需要执行的任务(如文本生成、分类、翻译等)。
- 上下文引导: 通过 prompt 提供上下文信息,确保模型输出符合业务需求。
- 条件控制: 通过 prompt 设定条件或规则,控制模型的行为(如生成特定格式的文本或遵循特定逻辑)。
大模型节点在工作流中的角色
- 文本生成: 生成报告、邮件、文案等。
- 信息提取: 从文本中提取关键信息(如日期、名称、事件)。
- 分类与标注: 对文本进行分类或打标签。
- 翻译与转换: 将文本翻译成其他语言或转换为特定格式。
- 决策支持: 基于输入数据提供建议或决策。
为了让大模型更符合工作流调用的特点,也为了精简提示词让大模型直击核心功能,一般配置md格式的prompt结构如下:
# 角色
你是一位专注于xxx的xxx,擅长xxx,请分析{{input}}数据,助力xx,结果达成。
## 技能
### 技能 1: xxx
xxx具体描述
xxx具体描述
### 技能 2: xxx
xxx具体描述
xxx具体描述
输出示例:
----
xxxx
----
## 限制:
- 严格xxx
- 不要xxx
其中,prompt中是可以接收上一个节点的输出,作为当前节点的变量来引入,如上面所示的{{input}}就是表示上面节点的内容输出,这样可以让prompt变成动态化的,根据工作流不同的结果,来实现不同的prompt内容。
举个例子:
上面例子中使用了两个大模型节点,他们的功能分别是生成文案,和提取文案中的景点,下面是他们的prompt:
生成文案:提取景点:
可以看出,通过这两个大模型,就可以从工作流中得到景点的列表,最后调用搜索图片的工具,就可以生成我们想要的结果。
在目前市场上的大模型应用平台中,为了降低用户编写 Prompt 的门槛,许多平台都提供了 自动扩写提示词 的功能。这种功能允许用户只需输入几句核心诉求,平台即可通过智能优化生成规范的 Prompt 格式,用户可以在生成的基础上进一步修改和调整。这种功能极大地简化了 Prompt 的编写过程,提高了工作效率,同时也降低了使用大模型的技术门槛。
结语
在当下的大模型应用开发中,写好提示词已经变得非常重要,因为它直接决定了模型输出的质量、准确性和实用性。随着大模型的广泛应用,提示词(prompt)已经成为开发者、产品经理和用户与大模型交互的核心工具。一个精心设计的提示词可以显著提升模型的表现,而一个模糊或不完整的提示词则可能导致输出偏离预期,甚至完全无效。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~