大白话讲解MCP

前言

我们不一开始就给出MCP的概念,用大白话一步一步讲解MCP的出现的原因、MCP的相关概念。
假设你是一个全栈开发工程师,有一天老板找到你让你开发一个AI聊天应用,作为你一个AI小白你什么感受?除了懵逼,还有就是恐慌,AI太高端了我怎么会呢?但是这样一个AI聊天应用程序其实非常简单。

入门代码

在根目录创建一个.env文件,里面配置一下baseurl和apikey,然后写几行代码:

import os
from openai import OpenAI

# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())

# 配置 OpenAI 服务

client = OpenAI()

response = client.chat.completions.create(
    messages=[
        {
   
   
            "role": "user",
            "content": "讲个笑话",
        }
    ],
    model="gpt-3.5-turbo",
)

print(response)

print(response.choices[0].message.content)  # 更具体的的打印

因为大部分大模型厂商都兼容OpenAI规范,所以只要替换baseurl和apikey就行。稍微详细的内容可以参考这篇博客

实现连续对话

其实很简单,说白了就是把多个会话内容都放到message中就行:

messages=[
        {
            "role": "user",
            "content": "讲个笑话",
        },
        {
            "role": "user",
            "content": "基于上面的笑话,再延伸一个",
        },
    ],

也就是说我们每次个AI发的内容都包含了历史所有的聊天消息。

理解消息类型

System消息

系统消息是一种系统提示词,来知道AI怎么回复用户的问题。

  • 设定AI的行为和角色
  • 定义回答的风格和限制
  • 用户通常看不到此消息
  • AI会始终遵循这些指令
User消息

用户提问的消息。

  • 用户发送的问题和指令
  • 对话的驱动力
  • 包含问题、请求和陈述
  • 通常显示在UI上
Assistant消息

AI回复的消息。

  • AI的回复内容
  • 根据历史上下文生成
  • 反映system指令的限制
  • 展示给用户的内容

AI聊天系统上线了

让你意想不到的是几行代码就把一个AI聊天核心逻辑搞定的,然后搞了前段和后端的一点代

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SunnyRivers

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值