大模型神书《从零构建大模型》分享,GitHub标星22k!!

在这里插入图片描述

《从零构建大模型》是一本即将于今年10月底发布的书籍,github已经吸引了惊人的21.7k标星!作者是威斯康星大学麦迪逊分校的终身教授,在GitHub、油管、X上拥有大量粉丝,是一位真正的大佬。
在这里插入图片描述
在本书中,读者将从内到外了解 LLM 的工作原理。在这本富有洞察力的书中,畅销书作家 Sebastian Raschka 将指导读者逐步创建自己的 LLM,并用清晰的文本、图表和示例解释每个阶段。读者将从最初的设计和创建到在通用语料库上进行预训练,再到针对特定任务进行微调。

《构建大型语言模型(从头开始)》教读者如何:规划并编码法学硕士 (LLM) 的所有部分准备适合 LLM 培训的数据集使用读者自己的数据对 LLM 进行文本分类微调应用指令调整技术确保读者的 LLM 遵循指令将预训练权重加载到 LLM 中大型语言模型 (LLM) 为 ChatGPT、Bard 和 Copilot 等尖端 AI 工具提供支持,这看起来像是一个奇迹,但它们并不是魔法。

本书通过帮助读者从头开始构建自己的 LLM,揭开了 LLM 的神秘面纱。读者将获得关于 LLM 工作原理的独特而有价值的见解,学习如何评估其质量,并掌握具体的技术来微调和改进它们。

有需要这本《从零构建大模型》书籍PDF,可以微信扫描下方CSDN官方认证二维码免费领取

书籍目录内容

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

有需要这本《从零构建大模型》书籍PDF,可以微信扫描下方CSDN官方认证二维码免费领取

### 构建大型语言模型的基础资源 从开始构建大型语言模型是一个复杂但极具教育意义的过程。以下是几个重要的方面以及推荐的相关 GitHub 项目和教程: #### 1. **理论基础** 为了理解如何从头开始构建大模型,了解其核心组件至关重要。这包括但不限于: - 参数存储与管理:通过计算模型的总大小来评估硬件需求[^1]。 - 文本分词器的设计:实现简单的 tokenizer 是第一步,例如基于词汇表映射字符串到整数的功能[^2]。 - 嵌入层的作用及其维度选择:嵌入向量的维度决定了模型能够捕获的信息丰富程度,同时也影响了训练效率[^3]。 #### 2. **GitHub 开源项目推荐** ##### (a) GPT-like Models - **`karpathy/nanoGPT`**: Andrej Karpathy 的 nanoGPT 提供了一个简洁易懂的小型化 GPT 实现方案。它不仅适合初学者学习 Transformer 结构的工作原理,还提供了完整的微调流程说明。 ```python import torch from transformer import GPT model = GPT(vocab_size=50257, n_layer=12, n_head=12, n_embd=768) print(model) ``` - **特点**: - 支持多 GPU 并行加速; - 配备详细的文档指导用户完成安装部署过程; ##### (b) BERT-like Models - **`huggingface/transformers`**: Hugging Face 官方仓库虽然主要专注于预训练权重加载功能,但也包含了部分自定义网络结构的例子可供参考。 ```bash git clone https://github.com/huggingface/transformers.git cd transformers/examples/pytorch/language-modeling/ pip install -r requirements.txt ``` - **优势**: - 社区活跃度高,遇到问题容易找到解决方案; - 可扩展性强,允许开发者调整超参设置满足特定应用场景的需求; #### 3. **在线课程与资料链接** 除了上述代码库外,还有一些高质量的教学材料可以帮助加深对整个系统的认识: - CSDN 博客文章系列介绍了文本数据前处理方法等内容[^4]。 - Coursera 上由 DeepLearning.AI 推出的专项计划涵盖了经机器翻译、注意力机制等多个主题领域知识体系构建路径规划建议等实用技巧分享视频片段演示效果直观生动形象具体操作步骤清晰明了便于模仿实践应用价值较高值得一看哦! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值