论文:Confidence Is All You Need: Few-Shot RL Fine-Tuning of Language Models
链接:https://arxiv.org/pdf/2506.06395
颠覆性创新:自己教自己
“不用人工标注!不用奖励模型!16个样本训练20步,数学能力飙升21%!”
这篇论文提出了RLSC(基于自信心的强化学习),让大语言模型用自身答案的置信度作为奖励信号。就像学生通过检查自己的解题把握来提升成绩,完全摆脱对人类标注的依赖。
RLSC工作流程图与概率分布对比图
传统方法的三大痛点
- 人工标注贵:RLHF需大量人工给答案打分
- 计算成本高:TTRL方法每题需生成64个答案投票
- 设计难度大:奖励函数像“黑魔法”调参困难
RLSC核心技术:分布优化
从外部走向本质,RLSC的核心思想令人拍案叫绝——用模型自信度这个模型内部信号代替多数投票的外部信号!只需优化自信度目标如下:
通俗版解读:
▸ 多数投票法 → 让64个AI“陪审团”选最佳答案
▸ RLSC → 直接让AI提升自认为正确的概率
为了优化自信度目标,作者采用了如下的损失函数:
这个损失函数鼓励模型对旧模型认为自信的响应给出更高的 log 概率。关键是,它不需要外部奖励模型,也不需要标注数据,仅使用模型自身的信念分布作为反馈。
实际训练中,作者也推广至可微函数,在梯度计算中应用平滑技巧:
加个小小α值(如0.1),训练稳定性大幅提升!
小成本大提升:20步训练显著提高数学推理能力
仅用16样本/题,在8块A100上训练10-20步,Qwen2.5-Math-7B模型全面进化:
实验结果对比表
在数学测试集上的结果:
- Minerva Math:10.7% → 32.4% (+21.7%)
- OlympiadBench:15.1% → 35.9% (+20.8%)
- AIME24:13.3% → 26.7% (+13.4%)
意外收获:模型学会快推理
RLSC调教后的模型竟主动省略推理步骤,发现正确答案之后,抛弃重复的推理思考,直接用简洁的思考过程给出正确答案。
案例1:分段函数求极值问题
- 原始模型:写满Python代码却算错
- RLSC模型:三步推导直出答案 ✅
案例2:坐标距离计算
- 原始模型:错误输出10
- RLSC模型:精准得出 ✅
行业地震级启示
- 低成本革命:中小企业也能微调大模型
- 自我进化:AI不依赖人类标注不断进化
- 安全隐忧:模型有时对错误答案过度自信
“高质量训练源自模型内部信号,而非外部标签”——这或是打开RL新范式的钥匙!
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
5. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】