本文介绍了tensorflow的常用函数,源自网上整理。
TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU。一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测。如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作.
并行计算能让代价大的算法计算加速执行,TensorFlow也在实现上对复杂操作进行了有效的改进。大部分核相关的操作都是设备相关的实现,比如GPU。
下面是一些重要的操作/核:
操作组 | 操作 |
Maths | Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal |
Array | Concat, Slice, Split, Constant, Rank, Shape, Shuffle |
Matrix | MatMul, MatrixInverse, MatrixDeterminant |
Neuronal Network | SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool |
Checkpointing | Save, Restore |
Queues and syncronizations | Enqueue, Dequeue, MutexAcquire, MutexRelease |
Flow control | Merge, Switch, Enter, Leave, NextIteration |
一、 TensorFlow的算术操作
操作 | 描述 |
tf.add(x, y, name=None) | 求和 |
tf.sub(x, y, name=None) | 减法 |
tf.multiply(x, y, name=None) | 乘法 |
tf.div(x, y, name=None) | 除法 |
tf.mod(x, y, name=None) | 取模 |
tf.abs(x, name=None) | 求绝对值 |
tf.neg(x, name=None) | 取负 (y = -x) |
tf.sign(x, name=None) | 返回符号 y = sign(x) = -1 if x < 0; 0 if x == 0; 1 if x > 0. |
tf.inv(x, name=None) | 取反 |
tf.square(x, name=None) | 计算平方 (y = x * x = x^2) |
tf.round(x, name=None) | 舍入最接近的整数 # ‘a’ is [0.9, 2.5, 2.3, -4.4] |
tf.sqrt(x, name=None) | 开根号 (y = \sqrt{x} = x^{1/2}). |
tf.pow(x, y, name=None) | 幂次方 (元素级) # tensor ‘x’ is [[2, 2], [3, 3]] |
tf.exp(x, name=None) | 计算e的次方 |
tf.log(x, name=None) | 计算log,一个输入计算e的ln,两输入以第二输入为底 |
tf.maximum(x, y, name=None) | 返回最大值 (x > y ? x : y) |
tf.minimum(x, y, name=None) | 返回最小值 (x < y ? x : y) |
tf.cos(x, name=None) | 三角函数cosine |
tf.sin(x, name=None) | 三角函数sine |
tf.tan(x, name=None) | 三角函数tan |
tf.atan(x, name=None) | 三角函数ctan |
二、张量操作Tensor Transformations
2.1 数据类型转换Casting
操作 | 描述 |
tf.string_to_number (string_tensor, out_type=None, name=None) |
字符串转为数字 |
tf.to_double(x, name=’ToDouble’) | 转为64位浮点类型–float64 |
tf.to_float(x, name=’ToFloat’) | 转为32位浮点类型–float32 |
tf.to_int32(x, name=’ToInt32’) | 转为32位整型–int32 |
tf.to_int64(x, name=’ToInt64’) | 转为64位整型–int64 |
tf.cast(x, dtype, name=None) | 将x或者x.values转换为dtype # tensor |
2.2 形状操作Shapes and Shaping
操作 | 描述 |
tf.shape(input, name=None) | 返回数据的shape # ‘t’ is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]] |
tf.size(input, name=None) | 返回数据的元素数量 # ‘t’ is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]] |
tf.rank(input, name=None) | 返回tensor的rank(维度) 注意:此rank不同于矩阵的rank, |
tf.reshape(tensor, shape, name=None) | 改变tensor的形状 # tensor ‘t’ is |