指代消解《End-to-end Neural Coreference Resolution》

Motivation

之前提出用神经网络做指代消解任务的思想都使用句法分析的结果或者手工构造的特征作为输入。这篇文章第一次使用端到端的模型,证明了在不需要输入额外的特征的情况下也可以取得了最好的效果。

 

基本术语:

原文链接:https://blog.csdn.net/Huang_cainiao/article/details/94597600

                                              https://i-blog.csdnimg.cn/blog_migrate/0108eef2cf6f447693d096d27f5c2a95.png

  • mention 可以理解为文本中实体的表述或者是具有实体含义的表述
  • antecedent 可理解为前指,图中 “Sally” 和 “she ” 具有共指关系,它们都指向关于“Sally”这个人。“Sally” 在"she"前面,即“Sally” 是“she”的前指。
  • coreferent 这就是共指关系,“Sal
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值