如何切断gpu进程

在使用jupyternotebook进行深度学习训练时遇到CUDA内存不足的问题,这可能是由于GPU内存被先前的进程占用。通过运行nvidia-smi命令找出占用GPU的PID,然后使用taskkill命令终止相应进程,可以释放GPU内存并重启kernel以继续工作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本人在对movingmnist数据集使用conlstm进行训练和测试时,会报错CUDA out of memory,当然这最主要的原因是gpu的内存不够。

但有时是jupyter notebook已经卷过一次在gpu中占了内存,但重新要卷加起来就内存不够,在这种 情况下就可以切断gpu进程,jupyter notebook中会显示kernel切断,以此重新开始。

具体操作为:

  1. cmd打开窗口。

  1. 输入nvidia-smi查看gpu型号和使用进程PID(我的为17896和19232)

  1. 以停止19232为例,输入taskkill -PID 19232 -f,终止该进程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值