Multi-view Deep Network for Cross-view Classification

本文提出了一种多视图深度网络(MvDN),旨在解决跨视图识别中的挑战,尤其是非线性差异。MvDN包含视图特定和公共子网络,以消除视图差异并获取共享的判别表示。通过Fisher损失优化,该方法在人脸识别实验中表现出色,对比现有线性和无监督方法,具备更好的鲁棒性和区分性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Multi-view Deep Network for Cross-view Classification

CVPR 2016 IEEE Conference on Computer Vision and Pattern Recognition
Meina Kan1,2 Shiguang Shan1,2 Xilin Chen1
1Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China
2CAS Center for Excellence in Brain Science and Intelligence Technology {kanmeina, sgshan, xlchen}@ict.ac.cn

摘要

跨视图识别是计算机视觉中的一个重要问题,它主要是对不同视图之间的样本进行分类。不同的视图之间的巨大差异使得这个问题相当具有挑战性。为了消除复杂的(甚至是高度非线性的)视点差异以获得良好的跨视点识别,我们提出了一个多视点深度网络(multi-view deep network, MvDN),该网络寻求多个视点之间共享的非线性鉴别和视点不变表示。具体来说,我们提出的MvDN网络由两个子网络组成,视图特定的子网络试图消除视图特定的变化,下面的公共子网络试图获得所有视图共享的公共表示。作为MvDN网络的目标,从所有视图的样本中计算Fisher损失,即瑞利商目标,以指导整个网络的学习。因此,来自MvDN网络

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值