导航系统通常需要借助多个传感器来获取准确的位置和姿态信息。而将惯性导航系统(Inertial Navigation System, INS)与全球定位系统(Global Positioning System, GPS)进行组合导航,可以提高导航的精度和鲁棒性。本文将介绍如何使用卡尔曼滤波(Kalman Filter)算法实现INS与GPS松组合导航,并提供相应的MATLAB代码。
卡尔曼滤波是一种最优估计算法,能够利用系统的动力学模型和测量数据来估计系统状态的最优解。在INS与GPS组合导航中,我们可以将INS作为系统的动力学模型,将GPS测量数据作为观测数据,使用卡尔曼滤波来融合二者的信息,从而得到更准确的导航解。
首先,我们需要定义导航系统的状态和观测向量。在本例中,假设导航系统的状态向量为:
x = [position, velocity, attitude]'
其中,position表示位置,velocity表示速度,attitude表示姿态。观测向量为:
z = [GPS_position, GPS_velocity]'
其中,GPS_position表示GPS测量的位置,GPS_velocity表示GPS测量的速度。
接下来,我们需要定义系统的动力学模型和观测模型。系统的动力学模型描述了状态向量在时间上的变化规律,观测模型描述了观测向量与状态向量之间的关系。
在本例中,假设系统的动力学模型为:
x_k = F * x_{k-1} + w_k
其中,x_k表示时刻k的状态向量,F表示状态转移矩阵