大家好,我是 同学小张,+v: jasper_8017 一起交流,持续学习C++进阶、OpenGL、WebGL知识和AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,共同学习和进步。
目前在AI Agent应用的开发中,一般是利用大模型思考接下来应该干什么,应该使用什么工具。思考的结果一般是通过json的形式,或text的形式给出。当工具过多,或者任务较复杂时,思考步骤会非常多,对前面步骤结果的记忆能力也非常有考验,灵活性也较差。
本文我们一起来看一篇论文,这篇论文提出让大模型根据任务生成可执行代码来将所有工具的调用统一到一个环境中,与Python解释器集成,自动执行代码动作,并在多轮交互中根据新观察动态修改先前动作或发出新动作,大大提升 Agent 与环境之间的交互能力和灵活性。
论文原文:https://arxiv.org/pdf/2402.01030