常见的概率分布有连续分布和离散分布两类。
离散数据,就是数据的取值是不连续的。例如掷硬币就是一个典型的离散数据,因为抛硬币的就两种数值(也就是2种结果,要么是正面,要么是反面)。
第2种是连续数据。它能取任意的数值。例如时间,心跳等等。
其中连续分布包括均匀分布、正态分布、t分布,卡方分布和F-分布等。
离散分布包括0-1分布、二项分布、泊(Pō)松分布等。
均匀分布(Uniform distribution)
均匀分布是指概率的分布是等距的(意思就是所有的结果,都有一样的可能性)。
比如:硬币具有均匀分布的特点,因为在抛硬币中正面或反面的概率是相同的。
分为连续型和离散型两种。
-
连续型可以认为是一条等距点构成的曲线。
-
离散型是独立的一个个点。
正态分布(Normal distribution)
正态分布有两个参数:均值和方差。
-
正态分布的数学期望值(均值)等于位置参数,决定了分布的位置。
-
方差等于尺度参数,决定了分布的幅度。