和机器学习相关的常见的概率分布有哪些?

常见的概率分布有连续分布和离散分布两类。

离散数据,就是数据的取值是不连续的。例如掷硬币就是一个典型的离散数据,因为抛硬币的就两种数值(也就是2种结果,要么是正面,要么是反面)。

第2种是连续数据。它能取任意的数值。例如时间,心跳等等。

其中连续分布包括均匀分布、正态分布、t分布,卡方分布和F-分布等。

 

离散分布包括0-1分布、二项分布、泊(Pō)松分布等。


均匀分布(Uniform distribution)

均匀分布是指概率的分布是等距的(意思就是所有的结果,都有一样的可能性)。

比如:硬币具有均匀分布的特点,因为在抛硬币中正面或反面的概率是相同的。

 

分为连续型和离散型两种。

  1. 连续型可以认为是一条等距点构成的曲线。

  2. 离散型是独立的一个个点。


正态分布(Normal distribution)

正态分布有两个参数:均值和方差。

  1. 正态分布的数学期望值(均值)等于位置参数,决定了分布的位置。

  2. 方差等于尺度参数,决定了分布的幅度。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值