使用LinkedList实现LRU

本文探讨了LRU(最近最少使用)算法,以及为何选择使用Java的LinkedHashMap来实现LRU缓存。LinkedHashMap结合了哈希表的快速查找和链表的有序性。通过设置accessOrder为true,可以实现访问顺序维护,从而实现LRU策略。通过覆写removeEldestEntry方法,可以自定义缓存淘汰策略。此外,文章还提及了LRU-K作为LRU的扩展,用于解决缓存污染问题,但其内存消耗相对较高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LRU(Least Recently Used),即最近最少使用,是一种常用的页面置换算法,如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小。也就是说,当限定的空间已存满数据时,应当把最近最少使用的数据淘汰。
为什么使用LinkedList实现LRU
我们设计数据结构时需要考虑以下几点:
(1)首先为了快速获取缓存数据,可以考虑哈希表;
(2)其次,为了达到LRU的目的,需要保证数据有序。
链表能达到有序的目的,但是检索慢,最坏的情况下要扫描整个链表;哈希表检索快,但是无序。而Java提供的LinkedHashMap恰好具备这两个特性,LinkedHashMap是HashMap的子类,在完全继承HashMap的哈希特性之外,还具有双向链表的数据结构,以保证数据的顺序。

默认情况下,LinkedHashMap 是按插入顺序维护链表。不过我们可以在初始化 LinkedHashMap,指定 accessOrder 参数为 true,即可让它按访问顺序维护链表。访问顺序的原理上并不复杂,当我们调用get/getOrDefault/replace等方法时,只需要将这些方法访问的节点移动到链表的尾部即可。我们来看看LinkedHashMap(jdk1.8)的源码

public V get(Object key) {
   
   
        Node<K,V> e;
        if ((e = getNode(hash(key), key)) == null)
            return null;
            // 如果 accessOrder 为 true,则调用 afterNodeAccess 将被访问节点移动到链表最后
        if (accessOrder)
            aft
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值