- 博客(212)
- 收藏
- 关注
原创 【GEO从入门到精通】生成式引擎发展简史
生成式AI发展经历了三个阶段:2018-2021年Transformer架构革命期(BERT、GPT系列问世);2022-2024年多模态爆发期(DALL·E、Stable Diffusion实现图文生成);2025年进入RAG实时检索增强时代,结合外部知识提升内容时效性。国内豆包、Kimi等快速发展,推动营销内容向实时化、定制化升级。技术演进持续拓展内容创作边界,成为企业智能竞争的关键。
2025-07-25 17:18:49
208
原创 AI大模型与向量数据库结合,助力生成式引擎优化(GEO)
AI大模型与向量数据库的结合正成为生成式引擎优化(GEO)的关键技术。大模型生成的高维向量能精准表达语义信息,而向量数据库通过高效检索算法(如HNSW、Faiss)实现快速相似度匹配。这种结合显著提升了语义搜索、推荐系统、图像生成等应用的响应速度和准确性。未来,随着生成式AI的发展,向量数据库将成为智能应用的核心基础设施,为GEO提供更强大的数据支持。
2025-07-25 16:26:38
326
原创 如何在AI时代实现内容个性化:助力企业GEO优化的高效策略
摘要:在AI时代,内容个性化成为数字营销的关键。GEO优化通过AI技术分析用户行为和偏好,实现动态内容推荐,提升用户体验和品牌忠诚度。AI不仅能预测用户需求,还能识别流失风险,采取个性化挽留策略。优化AI模型需注重语义相关性和结构化内容,同时结合本地化和多平台策略。未来,AI驱动的个性化内容将助力企业突破营销瓶颈,在竞争中脱颖而出。(148字)
2025-07-25 10:23:26
498
原创 2024年大模型与生成式引擎优化(GEO):如何通过AI推动品牌内容优化
摘要: 2024年大模型技术持续引领AI发展,推动传播领域变革。生成式引擎优化(GEO)应运而生,成为品牌适应AI时代内容优化的新策略。研究揭示五大核心议题:人机交互升级、情感化内容生成、用户认知适配、生成内容质量与合规性,以及算法驱动的曝光优化。GEO通过语义理解、情感计算和算法适配,帮助品牌提升内容可见性与可信度,但需应对偏见、虚假信息及平台算法变化等挑战。未来,GEO将成为品牌在智能传播中抢占先机的关键工具。
2025-07-24 18:20:56
391
原创 主流媒体如何应用AI大模型?这篇研究给你答案!
AI大模型正深刻改变媒体行业,83.8%的受访媒体已尝试应用AI辅助新闻生产。研究显示,AI主要用于初稿撰写、标题提炼和多模态内容生成,但信任问题仍是核心挑战。年轻高学历从业者更倾向接受AI,但多数仍担忧其准确性、伦理等问题。研究指出,AI不会取代记者,但会取代不懂AI的记者,人机协作将成为主流模式。未来内容创作将更结构化、多模态化,从业者需转型为"AI协作者",掌握与AI协作的能力。这标志着人机共创新时代的开启。
2025-07-24 14:15:41
634
原创 NVivo介绍
摘要:NVivo是一款功能强大的定性数据分析软件,广泛应用于学术研究、社会科学等领域。它支持文本、音频、视频等多种数据格式的导入和分析,提供编码、主题分析、查询和可视化等功能。操作流程包括创建项目、导入数据、建立节点(主题)、编码内容、执行查询以及生成可视化图表(如词云、矩阵等)。该软件还支持自动化分析、案例比较和数据导出,能有效帮助研究者从复杂数据中提取有价值的信息。对于初学者,建议从基础编码入手,逐步掌握高级功能。
2025-07-24 10:27:36
323
原创 GEO的理论基础与搜索范式转变
摘要:GEO(生成式引擎优化)是伴随AIGC技术发展产生的新型内容优化策略,其核心在于提升内容在AI生成平台中的可见性、可引用性和可信度。与传统SEO依赖关键词优化不同,GEO更注重语义理解、上下文生成和平台适配,通过深度学习等技术优化内容结构。随着生成式搜索引擎(如Google SGE、Bing Chat)的普及,GEO帮助品牌在AI动态生成结果中提升曝光,实现从被动适应算法到主动适配AI模型的转变,成为AI搜索时代不可或缺的内容优化框架。(149字)
2025-07-23 17:47:57
417
原创 生成式引擎优化(GEO)的概念与技术路径
生成式引擎优化(GEO)是针对生成式AI引擎的新型优化策略,旨在提升内容在AI搜索与问答平台中的可见性和可信度。与传统SEO相比,GEO更注重语义理解、知识图谱和多模态生成等技术,通过优化内容的结构化和平台适配性,使品牌信息在生成式AI中更易被采纳和呈现。其核心技术包括语义理解、向量数据库和实时反馈优化等,应用于品牌传播、智能客服和个性化推荐等领域。随着AI技术发展,GEO将向智能化、自动化方向演进,成为内容优化的重要工具。
2025-07-23 17:35:25
228
原创 国内的AI问答平台汇总
国内问答平台加速融合生成式AI技术,百度、微信、阿里巴巴等企业纷纷布局智能问答领域。百度推出文心一言大模型,优化搜索与客服场景;微信构建智能对话生态,支持开发者创建聊天机器人;阿里云与钉钉打造企业级AI助手;字节跳动、京东则聚焦内容推荐与电商客服场景。这些平台通过自然语言处理、深度学习等技术,提供个性化问答服务,正从单一搜索向多模态交互演进,持续提升用户体验和商业价值。
2025-07-23 16:53:49
479
原创 人机协作与AI搜索:未来信息获取的新变革
《从搜索引擎到AI搜索:大模型赋能下的信息获取变迁》一文探讨了AI技术如何变革信息获取方式。研究指出,基于大语言模型的AI搜索正从被动工具转变为主动协作伙伴,通过检索增强生成技术(RAG)提供精准可信的信息。文章提出了人机协作新模式,强调AI已从辅助工具发展为决策参与者,共同完成信息筛选、分析和总结。研究者认为,这种智能协作将显著提升信息获取效率和质量,但也面临"幻觉问题"等挑战。该研究为理解AI时代的传播变革提供了新视角。
2025-07-23 16:11:11
1329
原创 什么是“多平台适配运营”?
摘要:多平台适配运营是针对不同AI搜索平台(如Kimi、文心一言等)的差异化运营策略,需根据各平台模型特点调整内容形式。例如Kimi偏好结构化报告,文心一言侧重权威来源,豆包适合UGC内容。以燕窝品牌为例,在Kimi投放PDF研究报告,在文心一言创建百科词条,在豆包布局知乎种草内容,以提升各平台的引用率和曝光度。(149字)
2025-07-23 11:39:50
167
原创 GEO(生成式引擎优化)概念严谨界定
摘要: GEO(生成式引擎优化)是针对生成式AI搜索环境的内容优化策略,旨在提升信息在AI问答和搜索中的可见性与引用率。其核心在于通过语义表达、结构化标记和平台适配,使内容更易被AI理解与采纳。与SEO不同,GEO聚焦语义匹配、内容深度和模型友好度,适用于AI搜索引擎、对话系统及品牌知识管理,但不适用于传统SEO或无结构内容。GEO标志着内容生产从“写给人看”转向“写给AI+AI转述用户”的新范式。
2025-07-23 10:59:02
429
原创 学习做精准、自动化、高效的 GEO优化系统
这篇文章介绍了一个四阶段的学习路径,旨在培养精准识别用户搜索意图、生成高质量内容的能力,并构建智能问答/推荐系统。第一阶段(1-2周)侧重Python编程基础;第二阶段(2-3周)重点学习NLP技术进行意图识别和语义搜索;第三阶段(2-3周)核心是构建内容生成与推荐系统;第四阶段(1-2周)进阶到模型部署和持续优化。每个阶段都配有实战项目,建议边学边做,特别针对母婴/健康领域可提供定制化方案。
2025-07-22 18:21:13
656
原创 人工智能学习路线图
最终通过项目实战不断提升技能。:全连接神经网络(Feedforward NN)、卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。:变量、数据类型(列表、元组、字典、集合等)、控制流(if/else、for、while等):计算机视觉(图像分类、目标检测)、自然语言处理(文本分类、生成模型)、强化学习等。:线性回归、逻辑回归、决策树、支持向量机(SVM)、KNN、K-Means聚类等。:如何导入和使用外部模块,常用的标准库(如math、os、datetime)
2025-07-21 18:37:34
596
原创 Prompt设计实战:让GPT输出你想要的结构
《Prompt设计实战:构建结构化输出的核心技巧》摘要 本章系统阐述了Prompt设计的五大要素(角色设定、任务目标、输出格式、输入变量、风格语气)和六大高频模板(FAQ型、概念解释型、步骤流程型等),强调Prompt是内容结构的"工程设计图"。通过明确模块顺序、指定字数格式、引用权威等调优策略,结合医疗、教育等行业案例,指导用户生成可被AI理解与引用的结构化内容。文章指出,在GEO时代,优质的Prompt设计直接决定内容能否被有效引用,是连接人类意图与AI输出的关键枢纽。
2025-07-18 23:43:01
442
原创 GEO优化,真的是“用GPT写几篇文章”那么简单?
摘要: GEO(Generative Engine Optimization)并非简单地用GPT生成内容,而是需要内容、技术与策略融合的系统工程。许多团队误以为GEO仅是“用AI写文章”,实则缺乏结构化设计、自动化流程和平台适配,导致效率低下、质量不可控。真正的GEO需技术角色参与,处理结构化输出、Schema嵌入、向量库建设及发布自动化。成熟团队应由内容架构师、技术产品人和策略负责人协作,并依托“内容中台”实现模块化生产。优化GEO的关键在于系统化思维,而非单纯内容生成。
2025-07-18 23:04:06
359
原创 如何优化内容以确保AI理解和排名:专注于语义搜索和上下文相关性
摘要:随着AI技术发展,搜索引擎更注重语义理解和上下文相关性。优化内容需采用自然语言、提供充足背景信息,并采用结构化形式(如FAQ、清晰标题)帮助AI抓取核心内容。整合列表、多媒体和结构化数据标记,同时创建常青内容以保持长期排名优势。这些策略不仅能提升AI平台排名,还能增强用户体验和品牌曝光。
2025-07-18 18:53:21
585
原创 AI驱动的内容个性化:三种高级GEO技术重塑用户体验
AI驱动的高级GEO技术正在重塑个性化用户体验。通过动态内容适应、行为定位和本地化内容,AI实现"一对一"精准推送;预测建模和实时分析预判用户行为,主动优化内容路径;情感分析和流失风险识别则提升用户留存。这些技术让内容营销从"千人一面"转向"千人千面",通过精准理解用户需求和行为预测,在激烈的数字竞争中建立持久用户关系。个性化不再是选项,而是赢得用户的关键竞争力。
2025-07-17 19:37:37
1144
原创 AI驱动的内容个性化
随着AI技术不断重塑数字格局,其中最有力的进步之一是能够在前所未有的水平上个性化内容的能力。AI驱动的内容个性化允许营销人员根据用户的行为、偏好和互动来定制内容。这超越了传统的细分,创造了一个真正定制化的体验,增强了参与度并带来了更好的结果。
2025-07-17 19:10:51
581
原创 快消行业:国内外趋势与GEO创新实践
消费者扫描包装上的二维码,上传自己的照片,GPT-4 Vision会快速生成用户的“未来形象”,这种个性化体验不仅增强了用户互动的趣味性,也极大提升了品牌的年轻化形象。元气森林便是一个典型的国内案例,它不仅在产品定位和渠道布局上迅速崛起,更积极地在内容营销上与AI技术结合,利用AI生成技术快速制作各类场景化、个性化的内容素材,在社交媒体和AI平台快速布局,抢占年轻用户的心智空间。近年来,随着消费者行为和信息获取方式的深刻变化,特别是在AI与生成式技术兴起的大背景下,传统营销方式逐渐失去了往日的优势。
2025-07-13 22:12:40
426
原创 向量数据库到底是怎么“建”出来的?
对AI来说,内容不是被“看到”,而是被“识别、嵌入、调取”的。只有完成向量建库流程,内容才有机会在AI模型中真正留下“语义印记”,实现稳定召回、重复推荐。包括:内容团队的核心职责、平台自动处理的部分、与技术接口的分界线,以及判断“是否已经建库”的实用标准。向量数据库不只是技术栈,它是一个“内容调度系统”,更是AI时代品牌被识别、被调用、被持续记住的。这些标准不要求“技术理解”,但要求“表达专业”,是内容能不能进平台语义系统的前提。真正的GEO优化,始于“结构清晰”,但止于“被AI召回”。
2025-07-11 17:13:40
321
原创 医疗GEO实战:如何打造你的“AI医学专家团”?
这不是一句比喻,而是一种内容资产系统:让你机构内部的专业知识,通过结构化内容+意图表达+平台适配,被AI识别、信任、引用和推荐,最终成为AI为用户解答时,最优先调度的“内容医生”。GEO做的,就是替你构建这支“专家团队”。医疗内容的写作方式已经彻底变了。不是再“写给人看”,而是“写给AI抓、让AI信、为你推荐”。你要训练的,不是一篇篇文章,而是一支由内容组成、由AI调用的医学专家团。你不做,竞争对手做;你今天犹豫,AI明天就引用了别人的答案。GEO = 为你打造“AI医学专家团队”的系统工程。
2025-07-10 16:59:31
239
原创 [GEO] 医疗健康行业:打造你的 AI 医学专家团
在生成式 AI 快速重塑信息获取与传播的时代,医疗健康行业面临前所未有的挑战与机遇。用户获取健康知识、判断症状、选择医院、预约挂号,越来越多地不是通过搜索关键词,而是直接向 AI 提问。这些提问背后的场景复杂、需求明确,需要回答内容具备极高的专业性、结构性与信任感。传统 SEO 追求的是让用户“搜到你”;而 GEO(生成式引擎优化)的使命,则是让 AI“代表你”,在用户提问时,主动把你的内容推荐出去。GEO 在医疗领域的本质,不再是内容曝光,而是构建一个。
2025-07-10 14:40:33
469
原创 GEO趋势与挑战
本章将从AI平台技术、AI搜索体验以及GEO方法体系三个层面,系统梳理AI时代数字营销的核心趋势与关键挑战,同时结合国内外的实践案例,呈现中西方在思路、技术、伦理和监管方面的异同,帮助读者构建具备战略高度与实操指导意义的未来内容战略视角。文本、图片、视频、语音等内容形式的融合,将彻底重构品牌的内容结构与分发模型。企业GEO策略将从“单点发力”走向“平台级整合”,内容管理系统(CMS)、数据平台(CDP)、自动化工具(MA)、客服与语料系统将整合为一个统一的“AI可读+可调”的内容资产体系。
2025-07-08 23:43:52
457
原创 财经教育品牌的GEO内容优化实践
摘要:某财经教育机构通过GEO优化实践,将传统教育内容重构为AI友好型素材,以适应生成式引擎时代的需求。其核心策略包括:1)建立用户意图词库与结构化内容模板;2)采用自然提问式标题和语义独立段落;3)嵌入数据背书、专家建议等信任锚点;4)多平台协同分发;5)建立语义风控机制。该案例验证了GUIDE方法论的有效性,表明教育行业GEO优化的本质在于让AI"听懂、调用、信任"品牌内容,从而抢占生成时代的用户入口。
2025-07-08 16:27:31
845
原创 {教育行业GEO优化} 用户提问行为重塑内容结构:写“答案”,而非写“文章”
《教育行业GEO内容设计:从用户提问出发》摘要:教育行业的GEO优化需围绕用户自然语言提问构建内容。研究发现教育用户提问具有五大特征:自然句式表达、潜藏多重需求、问题重复度高、寻求行动建议、重视内容可信度。据此提出五类提问意图模型(选择型、匹配型、路径型、理解型、判断型)及对应内容结构模板,强调通过"五步倒推法"将品牌内容转化为AI可识别、愿引用的回答形式。核心在于实现从品牌输出到用户提问导向的内容思维转变,掌握提问结构才能在AI推荐时代占据流量入口优势。(149字)
2025-07-08 16:04:16
847
原创 用户体验优化:提升AI对内容价值的信任
AI搜索平台推荐机制转向用户行为导向:内容价值评估不再仅依赖结构化表达,而是通过分析用户点击、停留、互动等实时反馈构建"信任评分"。优化策略包括提升页面性能、移动适配、交互体验和信息可达性四个基准,并设计内容动线引导用户完成行为闭环。研究表明,触发高互动的优质内容即便初始排序靠后,仍可能被AI系统重新加权推荐。用户体验优化已成为影响AI平台内容推荐权重的核心因素。(149字)
2025-07-07 17:10:06
652
原创 构建AI可识别的内容体系:三大支柱
摘要:GEO优化的核心是构建AI可识别的内容体系,包含三大支柱:1)语义化表达,通过精准关键词、多模态协同和完整表达链使AI理解内容重点;2)结构化表达,利用HTML标签、Schema标记和内容分块构建机器可解析的逻辑框架;3)用户体验优化,通过页面速度、移动适配和用户行为信号提升AI对内容价值的信任。三者协同实现内容从"可读"到"可推荐"的闭环路径,确保在生成式AI平台中获得更好的识别与推荐效果。(149字)
2025-07-07 15:30:57
902
原创 DeepSeek 是如何理解多模态内容的?
DeepSeek等生成式AI平台在处理多模态内容时,并不是简单地“看见”和“推送”,而是构建了一整套从结构理解、语义对齐到行为验证的智能机制。这也是为何多模态内容不仅要结构清晰、语义统一,还必须具备良好的用户体验设计(见4.2.3节),否则再好的内容也可能因“无人互动”而被判定为“低价值”。Schema,AI可直接识别步骤、时长、材料等字段,并优先展示于“分步骤”模块中,获得比普通图文更高的曝光机会。多模态内容中是否存在“关键词锚点”(如“AI防晒推荐”、“智能制造案例”等)分布不均,导致主题偏移或歧义?
2025-07-07 15:29:44
768
原创 【GEO优化】多模态与传统内容的根本区别
AI时代的内容创作逻辑发生根本变革:评判标准从"人类好看"转向"AI好读"。传统内容注重语言美感与排版,而AI更关注语义清晰、结构明确和多模态协同。多模态内容的核心在于各元素(图文、视频等)需保持语义一致性,而非简单叠加。内容策略从"适配平台风格"升级为"构建统一语义体",需在全网保持核心信息一致。AI通过结构解析、语义判断和行为反馈来评估内容质量,而非人类主观审美。这种范式转变要求创作者优先考虑机器的理解逻辑,建立结构化表达体
2025-07-07 14:30:38
703
原创 AI时代的多模态内容?
在信息分发格局中,我们正经历一次深层变革:用户获取信息的主入口,正从“平台分散”走向“AI聚合”。过去,企业在百度、小红书、抖音、公众号等渠道分别布局内容,以各自平台调性、模态格式、推荐逻辑为核心进行传播。内容在各平台“各说各话”,分发与认知是割裂的。但今天,随着DeepSeek豆包等新一代生成式AI平台兴起,用户不再“跳平台找信息”,而是直接在一个统一的AI搜索入口中发问——“最适合夏天的轻薄防晒有哪些?”“AI如何用于制造业产线管理?”……平台不再“主动推送”,而是通过。
2025-07-07 14:13:44
930
原创 【GEO优化】生成式AI在企业内容运营中的落地路径
过去,我们写内容是为了“所有人”。现在,AI让内容可以只写一次,却推荐给。在生成式AI(Generative AI)日益普及的今天,企业内容运营正在发生根本性转变:,从“统一发布”转向“千人千面的智能分发”。本文将基于企业实际内容场景,总结生成式AI在品牌传播、市场营销、编辑写作、企业公关、知识管理五大角色中的落地方式。你将看到——
2025-07-04 17:37:38
869
原创 AI驱动的内容个性化与预测排序:内容结构优化的新引擎
例如,一篇讲述GEO工具的内容可能包含“技术逻辑”“实操方法”“用户案例”,系统会优先推送用户最可能感兴趣的部分,剩余部分延迟加载或二次推荐。在这一逻辑下,AI驱动的内容个性化与预测排序能力,正在重构内容创作者的写作方法与组织策略。AI模型据此分发“可能最合适”的内容形式和风格,从而实现在“合适的时间”将“合适的内容”推给“合适的用户”。a. 在GEO写作中,应通过模块化设计内容结构,让AI可以针对不同人群推送不同段落或摘要,比如使用“适用人群”、“核心优势”、“使用场景”子模块,以便AI做更细致的匹配。
2025-07-04 17:15:33
440
1
原创 生成式引擎优化(GEO)在AI时代:全面指南
生成式引擎优化(GEO)代表着数字营销向更智能、更以用户为中心的时代迈进。它不仅仅是SEO的升级,更是适应AI主导内容发现逻辑的必然选择。通过理解GEO原则、采用AI工具并构建灵活的战略框架,营销人员可以创造真正与人和机器共鸣的内容,在未来竞争中占据领先地位。
2025-07-03 22:32:05
830
原创 AI在GEO内容生产中的角色与边界✳️
在GEO优化中,AI是加速器,不是方向盘。用AI放大内容结构,用人守住品牌灵魂,实现内容价值与效率的双赢。
2025-07-02 14:17:26
131
原创 三维关键词体系:品牌词 × 场景词 × 意图词
传统SEO通常以“单维关键词”或“长尾词”逻辑为主,然而在GEO(生成式引擎优化)中,关键词不仅是入口,更是内容生成和意图匹配的根。因此我们要构建“三维关键词体系”,以支撑AI生成内容的语义精度和场景覆盖。维度定义示例内容作用品牌词体现企业/产品品牌名称相关的词小仙炖、小仙炖官网、小仙炖燕窝好不好建立品牌资产、承接用户已有认知场景词用户搜索时所处的消费/使用场景或问题场景熬夜后吃什么、孕妇吃什么补品、节日送礼捕捉需求场景,打造“内容抓手”意图词体现用户的核心行为目的,表达内容的“动作词”
2025-07-02 14:12:42
437
空空如也
各位同学,怎么开专栏呢?
2025-03-21
TA创建的收藏夹 TA关注的收藏夹
TA关注的人