【课程作业经验】基于Mindspore实现MTCNN

本文详述了一位初学者基于Mindspore框架实现MTCNN(多任务级联卷积网络)的过程,包括数据集下载、训练环境配置、模型训练和遇到的问题。项目最终完成了PNet、RNet、ONet的搭建、训练和测试,但移动端部署未完成。文章还分享了Mindspore与Pytorch在API和训练流程上的差异,以及解决内存溢出和速度优化的经验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍

本项目的来源是我选修的北航与华为合作的《AI开源计算系统前沿技术》课程大作业。课程请到华为的各位专家介绍了华为目前的AI软硬件体系,并讲解了许多人工智能领域的知识。

我的大作业选题是用轻量级的网络模型backbone,实现手机端人脸检测算法,并使用MindSpore Lite在端侧推理部署。比较遗憾的是整体项目开发进度慢于预期,加上移动端目标检测APP的源码中使用了JNI等我不熟悉的接口,最后没有实现移动端的部署,仅实现了人脸检测+关键点检测神经网络的搭建、训练和测试。

前期调研之后,我决定基于MindSpore框架实现论文《Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks》中的人脸识别和关键点检测网络MTCNN。该网络的结构并不复杂,包括PNet、RNet、ONet这三个结构相似的网络。由于我对Python和机器学习都是初学者,项目过程中遇到了不少问题。解决过程中有了一些经验心得,斗胆在此做些分享。

本项目中的MTCNN部分代码基于夜雨飘零1的Github项目和华为MindSpore官方文档撰写,包括数据集生成、网络结构定义、网络训练、模型测试的代码。

本项目的Gitee地址

### 基于 MindSporeMTCNN 和 FaceNet 人脸识别平台实现 #### 平台概述 构建基于 MindSporeMTCNN 和 FaceNet 人脸识别平台涉及多个模块的设计与实现MTCNN 主要用于人脸检测和对齐,而 FaceNet 则负责提取人脸特征并完成身份验证或分类任务。 以下是具体的技术细节以及代码示例: --- #### 一、环境准备 在开始之前,需安装必要的依赖库,包括 `mindspore` 及其相关工具包。 ```bash pip install mindspore numpy matplotlib scipy Pillow ``` --- #### 二、MTCNN 实现 MTCNN 是一种多阶段卷积神经网络模型,由 P-Net、R-Net 和 O-Net 组成,分别用于候选框生成、区域调整和精确边界框预测。 ##### (1) 数据预处理 数据集应包含标注好的人脸图像及其对应的边界框坐标。 ```python import cv2 from PIL import Image import numpy as np def preprocess_image(image_path, target_size=(640, 480)): image = cv2.imread(image_path) image_resized = cv2.resize(image, target_size) image_normalized = (image_resized / 255.0).astype(np.float32) return image_normalized.transpose(2, 0, 1) # 示例调用 input_image = preprocess_image('example.jpg') print(input_image.shape) # 输出形状为 (C, H, W),即 (3, 480, 640)[^2] ``` ##### (2) 定义 P-Net 模型结构 P-Net 负责初步筛选可能的人脸区域。 ```python import mindspore.nn as nn import mindspore.ops as ops class PNet(nn.Cell): def __init__(self): super(PNet, self).__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=3, stride=1, pad_mode='valid', has_bias=True) self.prelu1 = nn.PReLU() self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='same') self.conv2 = nn.Conv2d(10, 16, kernel_size=3, stride=1, pad_mode='valid', has_bias=True) self.prelu2 = nn.PReLU() self.conv3 = nn.Conv2d(16, 32, kernel_size=3, stride=1, pad_mode='valid', has_bias=True) self.prelu3 = nn.PReLU() self.conv4_1 = nn.Conv2d(32, 2, kernel_size=1, stride=1, pad_mode='valid', has_bias=True) self.softmax = nn.Softmax(axis=1) self.conv4_2 = nn.Conv2d(32, 4, kernel_size=1, stride=1, pad_mode='valid', has_bias=True) def construct(self, x): out = self.prelu1(self.conv1(x)) out = self.pool1(out) out = self.prelu2(self.conv2(out)) out = self.prelu3(self.conv3(out)) cls_prob = self.softmax(self.conv4_1(out)) # 分类概率 bbox_pred = self.conv4_2(out) # 边界框回归 return cls_prob, bbox_pred pnet_model = PNet() # 初始化 P-Net 模型[^3] ``` ##### (3) R-Net 和 O-Net 扩展 R-Net 和 O-Net 类似于 P-Net,但输入尺寸更大且具有更复杂的结构。可以按照类似的模式定义这些层。 --- #### 三、FaceNet 实现 FaceNet 使用深度学习方法训练嵌入空间,在该空间中相似的人脸距离较近,不同人脸则相距较远。 ##### (1) Inception ResNet v1 结构 FaceNet 中常用的骨干网络是 Inception ResNet v1。 ```python class InceptionResNetV1Block(nn.Cell): def __init__(self, scale=1.0): super(InceptionResNetV1Block, self).__init__() self.scale = scale self.branch0 = BasicConv2d(320, 32, kernel_size=1, stride=1) self.branch1 = nn.SequentialCell([ BasicConv2d(320, 32, kernel_size=1, stride=1), BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1, pad_mode="pad"), ]) self.branch2 = nn.SequentialCell([ BasicConv2d(320, 32, kernel_size=1, stride=1), BasicConv2d(32, 48, kernel_size=3, stride=1, padding=1, pad_mode="pad"), BasicConv2d(48, 64, kernel_size=3, stride=1, padding=1, pad_mode="pad"), ]) self.conv2d = BasicConv2d(128, 320, kernel_size=1, stride=1) self.relu = nn.ReLU() def construct(self, x): branch0 = self.branch0(x) branch1 = self.branch1(x) branch2 = self.branch2(x) mixed = ops.concat((branch0, branch1, branch2), axis=1) output = self.conv2d(mixed) output *= self.scale output += x output = self.relu(output) return output inception_block = InceptionResNetV1Block(scale=0.17) # 创建一个 Inception ResNet V1 Block[^4] ``` ##### (2) 特征提取与对比损失函数 通过计算欧氏距离衡量两张人脸图片的相似度。 ```python class TripletLoss(nn.Cell): def __init__(self, margin=1.0): super(TripletLoss, self).__init__() self.margin = margin self.distance_fn = lambda a, b: ((a - b)**2).sum(axis=-1) def construct(self, anchor, positive, negative): pos_dist = self.distance_fn(anchor, positive) neg_dist = self.distance_fn(anchor, negative) loss = ops.maximum(pos_dist - neg_dist + self.margin, 0.) return loss.mean() triplet_loss_fn = TripletLoss(margin=0.2) # 初始化 triplet loss 函数[^5] ``` --- #### 四、集成与测试 将上述组件组合起来形成完整的流水线,并加载预训练权重进行推理。 ```python # 加载预训练参数 param_dict = mindspore.load_checkpoint("pretrained_mtcnn_facenet.ckpt") mindspore.load_param_into_net(pnet_model, param_dict["pnet"]) mindspore.load_param_into_net(inception_block, param_dict["facenet"]) # 测试流程 test_image = preprocess_image('test_face.jpg') cls_score, bbox_offset = pnet_model(test_image[np.newaxis]) # 添加 batch dimension print(f"Classification Score: {cls_score}, Bounding Box Offset: {bbox_offset}") ``` --- #### 总结 以上展示了如何利用 MindSpore 构建 MTCNN 和 FaceNet 的人脸识别框架。此方案涵盖了从基础的数据预处理到高级的模型设计与优化过程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值