LSTM——基于keras

本文介绍了LSTM的基本结构,重点解析了LSTM单元的细胞状态,并探讨了在Keras中LSTM的输入输出格式。内容包括:LSTM单元的工作原理、输入输出的维度解析,以及如何构建多层LSTM网络。文中还提到了在构建多层网络时的注意事项,如参数设置和信息传递方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近做一个关于用电负荷预测的项目,想用循环神经网络试一下,具有时间特性的数据预测当然非LSTM莫属了啦,但是感觉自己对LSTM的输入和输出不是很明白,就学习顺便整理一下吧。

此处属于我个人理解,可能有不正确的地方欢迎大家指正。


Cell

说到LSTM当然先来一张cell的图了:

7239122-3462c725294378b7.png

LSTM结构图


图中看起来是三个cell,其实是一个cell在不同时刻上的拼接,也就是说其实是一个cell在不同时刻的状态。我们就以中间那个cell为例进行说明吧。
其中,四个黄色的小矩形就是普通神经网络的隐藏层结构,其中第一、二和四的激活函数是sigmoid,第三个的激活函数是tanht时刻的输入Xt-1时刻的输出h(t-1)进行拼接,然后输入cell中,其实可以这样理解,我们的输入X(t)分别feed进了四个小黄矩形中,每个小黄矩形中进行的运算和正常的神经网络的计算一样(矩阵乘法),有关记忆的部分完全由各种门结构来控制(就是0和1),同时在输入时不仅仅有原始的数据集,同时还加入了上一个数据的输出结果,也就是h(t-1),那么讲来LSTM和正常的神经网络类似,只是在输入和输出上加入了一点东西。cell中可以大体分为两条横线,上面的横线用来控制长时记忆,下面的横线用来控制短时记忆。关于LSTM我通过参考画了一张图,如下:

7239122-6cc9c9fd5b2861c8.png

image

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值