【第四章】分类算法与应用(1)

本文介绍了机器学习中的分类算法,包括监督学习的概念,分类方法的定义和应用,如模式识别和预测。重点讲解了贝叶斯理论,通过一个实例展示了如何使用Python的sklearn库实现朴素贝叶斯分类器。通过加载鸢尾花数据集,训练并预测模型,评估了分类错误率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4.1分类算法概述

1、机器学习算法类型

①监督学习算法:就是我们教计算机如何做事情

②无监督学习算法:在非监督学习中,我们将让计算机自己学习。分为分类回归

2、分类方法的定义

根据已知类别的训练集数据,建立分类模型,并利用该分类模型预测未知类别数据对象所属的类别

3、分类方法的应用

模式识别(Pattern Recognition):通过计算机用数学技术方法来研究模式的自动处理和判读

模式识别的目标往往是识别,即分析出待测试的样本所属的模式类别

预测:从利用历史数据记录中自动推导出对给定数据的推广描述,从而能对未来数据进行类预测

4、分类器的构建图示

 

 

4.2概率模型

1、贝叶斯要解决的问题

①正向概率:假设袋子里有N个白球,M个黑球,随机摸一个,摸出黑球的概率有多大

逆向概率:如果事先不知道袋子里黑白球的比例,随机摸出几个球,根据这些球的颜色,可以推测袋子里面的黑白球比例

2、贝叶斯公式

 

 3、朴素贝叶斯分类算法

加载数据

from sklearn import datasets

iris = datasets.load_iris()

导入模型

from sklearn.naive_bayes import GaussianNB

gnb = GaussianNB()

训练模型+预测数据

y_pred = gnb.fit(iris.data, iris.target).predict(iris.data)

④输出

print("Number of mislabeled points out of a total %d points : %d"% (iris.data.shape[0],(iris.target != y_pred).sum()))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值