深度学习环境配置Ubuntu16.04+CUDA8.0+CuDNN+Anaconda2+openCV2.4.9+caffe(全离线GPU版)

该博客详细介绍了如何在Ubuntu16.04上离线安装CUDA8.0、CuDNN、Anaconda2以及OpenCV2.4.9,特别适合需要GPU支持的深度学习环境配置。内容包括显卡驱动安装、CUDA工具包和CUDNN的安装步骤,以及Anaconda2环境的设置,最后提到了Caffe的依赖项安装和编译过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Bernice_lying

前言

      深度学习燎原之势势不可当,现在很多现场使用深度方法的比赛需要自行配置环境和caffe。为此,博主准备了如下Ubuntu16.04下的caffe安装教程(GPU离线版)。亲测在配有GTX960显卡的机器上可用。因为之前试验踩了不少坑,这次一并打包在安装过程中,若大家后续配置仍有问题,可在下面留言,咱们一起解决!

【参考】

1. https://blog.csdn.net/u010459819/article/details/53057171?locationNum=1&fps=1

2. http://blog.csdn.net/xuzhongxiong/article/details/52717285

3. http://blog.csdn.net/u012177034/article/details/52102676

【准备】

1、Ubuntu16.04 操作系统;

2、查好自己的电脑显卡型号,去NVIDIA GeForce官网: http://www.geforce.cn/drivers 查询可用的显卡驱动,下载下来备着;

3、本文caffe环境搭建所用的各种安装包版本(所需依赖或安装包大家可自行上各大网站搜索下载好)如下:

GCC 4.8.5 G++ 4.8.5 显卡驱动 NVIDIA-Linux-x86_64-375.66.run
CUDA 8.0 CuDNN 5.1 cmake 3.9.0
Anaconda2 4.3.1 OpenCV 2.4.9 protobuf-python-3.3.0
leveldb-1.9.0 google-snappy 1.1.6 boost_1_64_0
OpenBLAS-0.2.19 glog-0.3.3 gflags
lmdb Caffe-master(BLVC)  

具体版本细节如下:


这些建议放在Ubuntu16.04的/home/XX/ 目录下;

后面这些包下载后,可以事先放在Ubuntu16.04的/home/XX/install_caffe文件夹里面,GCC/G++可以自己打个包放文件夹里,不然太凌乱了!


准备好了吗?下面就开始配置了!

使用快捷键ctrl+alt+T打开终端,然后在终端输入出巴拉巴拉打命令了!

【一、GCC & G++ 版本(可选)】

GCC:

1)安装

sudo dpkg -i cpp-4.8_4.8.5-4ubuntu2_amd64.deb
sudo dpkg -i gcc-4.8_4.8.5-4ubuntu2_amd64.deb
sudo dpkg -i gcc-4.8-base_4.8.5-4ubuntu2_amd64.deb
sudo dpkg -i libasan0_4.8.5-4ubuntu2_amd64.deb
sudo dpkg -i libcloog-isl4_0.18.4-1_amd64.deb
sudo dpkg -i libgcc-4.8-dev_4.8.5-4ubuntu2_amd64.deb

2)查看版本

cd
gcc -version
ls /usr/bin/gcc*

3)更换版本

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.8  100
sudo update-alternative
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值