SLAM常用C++程序库说明

本文全面介绍了点云处理领域的核心技术,包括PCL库、Eigen、Boost、g2o、Ceres、FLANN、VTK、CUDA等开源库在三维信息获取与处理的应用。同时,文章深入探讨了深度学习技术在图像处理、AR特效、AI音视频处理等领域的最新进展,以及在大数据开发、自然语言处理、区块链等领域的融合应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 PCL(PointCloudLibrary)

PCL(Point Cloud Library)是在吸收了前人点云相关研究基础上建立起来的大型跨平台开源C++编程库,它实现了大量点云相关的通用算法和高效数据结构,涉及到点云获取、滤波、分割、配准、检索、特征提取、识别、追踪、曲面重建、可视化等。支持多种操作系统平台,可在Windows、Linux、Android、Mac OS X、部分嵌入式实时系统上运行。如果说OpenCV是2D信息获取与处理的结晶,那么PCL就在3D信息获取与处理上具有同等地位,PCL是BSD授权方式,可以免费进行商业和学术应用。

PCL起初是ROS(Robot Operating System)下由来自于慕尼黑大学(TUM - Technische Universität München)和斯坦福大学(Stanford University)Radu博士等人维护和开发的开源项目,主要应用于机器人研究应用领域,随着各个算法模块的积累,于2011年独立出来,正式与全球3D信息获取、处理的同行一起,组建了强大的开发维护团队,以多所知名大学、研究所和相关硬件、软件公司为主。截止目前,发展非常迅速,不断有新的研究机构等加入,在Willow Garage, NVidia, Google (GSOC 2011), Toyota, Trimble, Urban Robotics, Honda Research Institute等多个全球知名公司的资金支持下,不断提出新的开发计划,代码更新非常活跃,至今在不到一年的时间内从1.0版本已经发布到1.7.0版本。

安装依赖:

官方网站:http://pointclouds.org/里面有大量的教程。

 

Eigen

Eigen是一个高层次的C ++库,有效支持线性代数,矩阵和矢量运算,数值分析及其相关的算法。除了C++标准库以外,不需要任何其他的依赖包。

Eigen适用范围广,支持包括固定大小、任意大小的所有矩阵操作,甚至是稀疏矩阵;支持所有标准的数值类型,并且可以扩展为自定义的数值类型;支持多种矩阵分解及其几何特征的求解;它不支持的模块生态系统 [2]  提供了许多专门的功能,如非线性优化,矩阵功能,多项式解算器,快速傅立叶变换等。

Eigen支持多种编译环境,开发人员对库中的实例在多种编译环境下经过测试,以保证其在不同编译环境下的可靠性和实用性。

 

Boost

Boost库是一个可移植、提供源代码的C++库,作为标准库的后备,是C++标准化进程的开发引擎之一。 Boost库由C++标准委员会库工作组成员发起,其中有些内容有望成为下一代C++标准库内容。在C++社区中影响甚大,是不折不扣的“准”标准库。Boost由于其对跨平台的强调,对标准C++的强调,与编写平台无关。大部分boost库功能的使用只需包括相应头文件即可,少数(如正则表达式库,文件系统库等)需要链接库。但Boost中也有很多是实验性质的东西,在实际的开发中使用需要谨慎。

 

 

g2o

g2o是一个开源C ++框架,用于优化基于图形的非线性误差函数。g2o被设计为易于扩展到各种各样的问题,并且通常可以在几行代码中指定新问题。当前的实现为SLAM和BA的几种变体提供了解决方案。

机器人技术以及计算机视觉中的各种问题涉及最小化可以表示为图形的非线性误差函数。典型的实例是同时定位和映射(SLAM)或束调整(BA)。这些问题的总体目标是找到最大限度地解释受高斯噪声影响的一组测量的参数或状态变量的配置。g2o是一个用于此类非线性最小二乘问题的开源C ++框架。g2o被设计为易于扩展到各种各样的问题,并且通常可以在几行代码中指定新问题。当前的实现为SLAM和BA的几种变体提供了解决方案。 

 

 

Ceres

Ceres Solver [1]是一个开源C ++库,用于建模和解决大型复杂的优化问题。它可以用于解决具有边界约束和一般无约束优化问题的非线性最小二乘问题。它是一个成熟,功能丰富且高性能的库,自2010年以来一直在谷歌的生产中使用。

 

 

FLANN

FLANN库全称是Fast Library for Approximate Nearest Neighbors,它是目前最完整的(近似)最近邻开源库。不但实现了一系列查找算法,还包含了一种自动选取最快算法的机制。

 

 

VTK

Vtk,(visualization toolkit)是一个开源的免费软件系统,主要用于三维计算机图形学、图像处理和可视化。Vtk是在面向对象原理的基础上设计和实现的,它的内核是用C++构建的,包含有大约250,000行代码,2000多个类,还包含有几个转换界面,因此也可以自由的通过Java,Tcl/Tk和Python各种语言使用vtk。

VTK是一个开放源码、自由获取的软件系统,全世界的数以千计的研究人员和开发人员用它来进行3D计算机图形,图像处理,可视化。VTK包含一个c++类库,众多的翻译接口层,包括Tcl/Tk,Java,Python。 Visualization Toolkit 是一个用于可视化应用程序构造与运行的支撑环境,它是在三维函数库OpenGL 的基础上采用面向对象的设计方法发展起来的,它将我们在可视化开发过程中会经常遇到的细节屏蔽起来,并将一些常用的算法封装起来。比如 Visualization Toolkit 将我们在表面重建中比较常见的MarchingCubes 算法封装起来,以类的形式给我们以支持,这样我们在对三维规则点阵数据进行表面重建时就不必再重复编写MarchingCubes 算法的代码,而直接使用Visualization Toolkit 中已经提供的vtkMarchingCubes 类。 Visualization Toolkit 是给从事可视化应用程序开发工作的研究人员提供直接的技术支持的一个强大的可视化开发工具。

 

 

OpenNI

OpenNI(开放自然交互)是一个多语言,跨平台的框架,它定义了编写应用程序,并利用其自然交互的API。OpenNI API由一组可用来编写通用自然交互应用的接口组成。OpenNI的主要目的是要形成一个标准的API,来搭建视觉和音频传感器与视觉和音频感知中间件通信的桥梁。

 

 

CUDA

CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构ISA)以及GPU内部的并行计算引擎。 开发人员现在可以使用C语言来为CUDA™架构编写程序,C语言是应用最广泛的一种高级编程语言。所编写出的程序可以在支持CUDA™的处理器上以超高性能运行。CUDA3.0已经开始支持C++FORTRAN

SLAM地图构建与定算法,含有卡尔曼滤波和粒子滤波器的程序 SLAM算法的技术文档合集(含37篇文档) slam算法的MATLAB源代码,国外的代码 基于角点检测的单目视觉SLAM程序,开发平台VS2003 本程序包设计了一个利用Visual C++编写的基于EKF的SLAM仿真器 Slam Algorithm with data association Joan Solà编写6自由度扩展卡尔曼滤波slam算法工具包 实时定与建图(SLAM),用激光传感器采集周围环境信息 概率机器人基于卡尔曼滤波器实现实时定和地图创建(SLAM)算法 机器人地图创建新算法,DP-SLAM源程序 利用Matlab编写的基于EKF的SLAM仿真器源码 机器人定中的EKF-SLAM算法,实现同时定和地图构建 基于直线特征的slam机器人定算法实现和优化 SLAM工具箱,很多有价值的SLAM算法 EKF-SLAM算法对运动机器人和周围环境进行同步定和环境识别仿真 SLAM using Monocular Vision RT-SLAM机器人摄像头定,运用多种图像处理的算法 slam(simultaneous localization and mapping)仿真很好的入门 SLAM自定导航的一个小程序,适合初学者以及入门者使用 slam算法仿真 slam仿真工具箱:含slam的matlab仿真源程序以及slam学习程序 移动机器人栅格地图创建,SLAM方法,可以采用多种地图进行创建 SLAM算法程序,来自悉尼大学的作品,主要功能是实现SLAM算法 对SLAM算法中的EKF-SLAM算法进行改进,并实现仿真程序 SLAM的讲解资料,机器人导航热门方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值