自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 【YOLOv11】网络结构图详解

Backbone 是目标检测模型的“特征提取器”,负责从输入图像中提取不同层次的语义特征。YOLO11 的 backbone 采用多尺度特征提取设计,最终输出 P3/8、P4/16、P5/32 三种尺度的特征图(分辨率依次降低,语义信息依次增强),用于后续检测头的目标识别与定位。注释含义: (网络层数索引)-(特征金字塔级数) / (相对于输入图像的下采样倍数)

2025-06-18 22:06:48 1148

原创 【YOLOv11改进】C3k2块卷积的DBB改进

把CBS层换成Diverse Branch Block(多样化分支块)即DBB。

2025-06-17 20:29:42 252

原创 YOLOv11改进点总结

的改进:相比较于YOLOv8模型,其将CF2模块改成C3K2,同时在SPPF模块后面添加了一个C2PSA模块,且将YOLOv10的head思想引入到YOLO11的head中,使用深度可分离的方法,减少冗余计算,提高效率。

2025-06-17 19:39:13 800

原创 YOLOv11改进块:C3、C2f、C3k2、C2PSA结构与代码

C3、C2f、C3k2、C2PSA结构与代码。本文分析了YOLOv5目标检测网络中的核心模块结构,包括C3、Bottleneck、C2f和C3k2等。C3模块采用双路径结构进行特征融合,Bottleneck使用残差连接提升训练效果。C2f模块通过改进的多尺度特征融合结构实现更高效的运算,而C3k2是其升级版本,通过可配置参数在C2f和C3k2模式间切换。

2025-06-17 16:42:00 870

原创 2024-2025年最新YOLO小目标检测改进论文

传统 YOLOv8 的 FPN 融合能力有限,难以保留浅层小目标的空间细节。SOD-YOLOv8 借鉴。传统 CIoU 损失在小目标边界框回归时,对中心点距离和宽高比例的惩罚不够直接,易导致定位偏差。:相比 CIoU,PIoU 对小目标边界框的微小偏移更敏感,定位精度提升约 1.1%~2.6%。:通过融合浅层高分辨率特征与深层语义特征,小目标定位精度提升显著。:动态调整不同通道和空间位置的特征权重,增强小目标特征的表达能力。注意力机制,可以优先处理对小目标重要的特征。在颈部的 C2f 模块中嵌入。

2025-06-08 20:39:23 780

原创 【YOLO小目标改进】YOLOv8s-SOD

针对小目标检测中目标尺寸小、背景复杂等挑战,本文提出SOD-YOLO算法,通过在特征提取网络集成S_C2f_CAFM和SPPF_E模块、设计含SCAM的双向特征金字塔网络并引入D_C2f_MSPA模块,以及采用NWD损失函数,在DOTAv1.0等数据集上实现mAP较YOLOv8提升6.7%-11.9%且参数减少13.9%。

2025-06-08 20:38:23 818

原创 baseline

将两个自定义配置文件复制到 PaddleDetection 框架的对应配置目录中。configs/picodet 是 PicoDet 模型的配置文件夹,ppq.yml 可能包含模型训练参数、网络结构配置等内容configs/datasets 用于存放数据集配置,voc_ppq.yml 可能定义了乒乓球数据集的路径、格式(如 Pascal VOC 标准)、类别信息等# 将当前目录下的 ppq.yml 文件,复制到 PaddleDetection 框架的 configs/picodet 目录!

2025-03-28 16:48:26 642

原创 飞浆PaddleDetection套件

在计算机视觉目标检测、实例分割等任务中,网络结构通常由骨干网络(Backbone)、颈部模块(Neck)和检测头(Head)组成。

2025-03-27 23:34:39 1121

原创 TrackNet V1-V4进阶之路

本文聚焦 TrackNet 系列深度学习框架,该系列旨在解决体育视频中高速物体的跟踪难题。TrackNetV1 基于热图架构,利用多帧输入应对运动模糊和遮挡问题。TrackNetV2 借助 U - Net 跳连接、MIMO 设计及加权交叉熵损失函数提升效率。TrackNetV3 引入背景估计、混合增强和轨迹校正技术,进一步优化跟踪性能。TrackNetV4 则通过运动注意力图与视觉特征融合的创新方式,增强了对高速物体的跟踪能力。关键词:TrackNet;体育分析;目标跟踪;深度学习;运动注意力;轨迹校正。

2025-03-20 16:54:35 973 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除