随笔录--图片相似度算法

 最近学校在教学可视化方向的数据相似度的知识,由此想来 总结一下对于图片数据的相似度算法

本文主要通过以下几个方面讲述图片相似度算法:

1、深度学习如何抽取图片特征?

2、图片特征如何计算相似度值?

3、(衍生)如何针对特定的部分计算相似度呢?

一、深度学习如何抽取图片特征?

    在生活中,我们看一个人相似我们会从眼睛、鼻子及嘴巴等这些角度去考虑,如果这些像,那么我们就会认为这两个人比较相似;同样在机器中判断相似度也是抽取出特征来计算的,在图像中的特征有纹理、轮廓、语义信息等这些。那么如何将它们抽取出来,这里我们就得用到卷积神经网络进行抽取。如图.

图片

    从上图最左侧可以看到,图像在不断的卷积、maxpool操作后,图片在不断的缩小,那么这里的每次操作后,都是一张特征图,最底层的带有的轮廓信息、最高层的带有语义信息,那么这里就是图片特征数据了。(这里的Backbone模型,可以用vgg、resnet、SwinTransform等都可以)。

提取特征代码如下:

import torch
from torch import nn
from torchvision.models import resnet50, resnet18

"""
1、先构建不同层级模型
2、加载图片进行推理
"""
origin_model = resnet50()

resnet50_weigth = torch.load('./model_weight/resnet50-0676ba61.pth')
origin_model.load_state_dict(resnet50_weigth)

model_new_level_1 = nn.Sequential(*list(origin_model.children())[:5])
model_new_level_1.eval()

model_new_level_2 = nn.Sequential(*list(origin_model.children())[:6])
model_new_level_2.eval()

model_new_level_3 = nn.Sequential(*list(origin_model.children())[:7])
model_new_level_3.eval()


#图2
plt.imshow(reset_model_level_2(torch.tensor(input_arrays).to(torch.float).permute(2,1,0).unsqueeze(0))[0][2].permute(1, 0).detach().numpy())

#图3
plt.imshow(reset_model_level_4(torch.tensor(input_arrays).to(torch.float).permute(2,1,0).unsqueeze(0))[0][2].permute(1, 0).detach().numpy())

二、图片特征如何计算相似度?

      一般在计算相似度值时,常用的算法有:欧氏几何距离算法、曼哈顿距、编辑距离、余弦距离等。那么在这种图片特征相似度计算中中,一般是用余弦距离进行计算。

实现的具体实例代码如下:

from sklearn.metrics.pairwise import cosine_similarity

def get_sims(vec1, vec2):
    cos_sim = cosine_similarity(vec1.reshape(1, -1), vec2.reshape(1, -1))
    return cos_sim

三、如何针对特定的部分计算相似度呢?

    前面大家应该也大概了解了,我们如何在图片之间判断相似。那么这里衍生的问题来了,如果有两张照片背景不同,但是主体相同你只想判断主体是否一致,这个时候你只想判断是不是同个人,那么这个时候怎么办呢?当然有可能前面的方法也同样可以找出来,但是也有可能因为背景信息过大,导致相似度判断不准确,这个时候我们就得使用语义分割模型进行主体分离了。

预处理:读取图片 第一步,缩小尺寸。 将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。 第二步,简化色彩。 将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。 第三步,计算平均值。 计算所有64个像素的灰度平均值。 第四步,比较像素的灰度。 将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。 第五步,计算哈希值。 将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。 得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算"汉明距离"(Hammingdistance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。 你可以将几张图片放在一起,也计算出他们的汉明距离对比,就可以看看两张图片是否相似。 这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。 实际应用中,往往采用更强大的pHash算法和SIFT算法,它们能够识别图片的变形。只要变形程度不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。 以上内容大部分直接从阮一峰的网站上复制过来,想看原著的童鞋可以去在最上面的链接点击进去看。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值