The absolut uri: http://java.sun.com/jsp/jstl/core cannot be resolved

本文介绍了如何解决因使用不兼容版本的JSTL (JavaServer Pages Standard Tag Library) 而导致的问题。主要步骤包括检查Servlet版本、确认JSTL版本是否匹配,以及确保应用服务器已安装正确的JSTL库。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为我使用了jstl1.2版本的jsp标准标签库,


报该错误,上网查询后发现了一篇文章,并找到了原因:

1.检查servlet 版本在web.xml中 <?xml version ="2.5">

2.检查JSTL的版本是否支持这个servlet版本 2.5 -->1.2JSTL  或者 2.4-->1.1JSTL

3.你的servlet容器必须要有相应的库,或者你必须手动添加到你的应用程序。如:JSTL 1.2 需要添加JSTL 1.2 jar 到 lib目录下

 

最终我将jstl标签库的jar包导入到lib中,问题得到解决!
<think>好的,我现在要解决用户在Keras或TensorFlow中遇到的metrics参数类型错误的问题,特别是使用mean_absolute_error时出现的类型错误。首先,我需要回想一下常见的错误原因和解决方案。 用户提到的问题是当设置metrics参数为'mean_absolute_error'时出现类型错误。根据经验,这可能是因为用户传递的字符串名称不正确,或者参数类型不符合要求。比如,Keras的metrics可以接受字符串标识符、函数对象或自定义的Metric子类实例。如果用户错误地传递了字符串但拼写有误,或者传递了错误的类型,比如将函数对象错误地以字符串形式传递,就会导致类型错误。 首先,我需要确认用户是否正确拼写了指标名称。正确的字符串应该是'mean_absolute_error',有没有可能用户用了其他的拼写方式,比如'mae'?因为在Keras中,'mae'是'mean_absolute_error'的缩写,两者都可以使用。但有时候,如果用户自己定义了同名的指标,可能会冲突,不过这种情况较少见。 接下来,用户可能错误地将函数对象作为字符串传递。例如,应该使用tf.keras.metrics.MeanAbsoluteError()或者函数mean_absolute_error,而不是字符串。这时候需要检查代码中的metrics参数是传递了字符串还是函数对象。例如: 正确的字符串形式: ```python model.compile(optimizer='adam', loss='mse', metrics=['mean_absolute_error']) ``` 或者使用函数对象: ```python from tensorflow.keras import metrics model.compile(optimizer='adam', loss='mse', metrics=[metrics.mean_absolute_error]) ``` 如果用户不小心将函数名用引号括起来,或者将函数本身错误地传递,就会导致类型错误。例如,写成'metrics.mean_absolute_error'作为字符串,而不是直接引用函数。 另外,TensorFlow的版本问题也可能导致这种情况。比如,某些旧版本可能对指标名称的支持不同,或者存在bug。用户需要确保他们使用的TensorFlow版本是最新的,或者至少是兼容的版本。 还有可能,用户的输入数据或模型输出的形状与指标函数不兼容。例如,mean_absolute_error期望的是两个相同形状的张量,如果模型的输出和标签的形状不一致,可能在计算指标时出错,但这时候可能不是类型错误,而是形状错误,错误信息会不同。所以用户的问题更可能是参数类型的问题。 此外,用户可能在自定义指标函数时,错误地使用了该函数的引用方式,但用户的问题中并没有提到自定义指标,所以这可能不是当前的问题所在。 总结可能的原因: 1. 错误拼写了指标名称字符串,导致Keras无法识别。 2. 错误地将函数对象作为字符串传递,或者相反。 3. TensorFlow版本问题导致API变动。 4. 其他环境或配置问题。 接下来,我需要验证这些可能性。首先,检查正确使用字符串的方式。例如,官方文档中说明,当使用字符串时,必须使用Keras内置的指标名称,如'mae'或'mean_absolute_error'。如果用户正确使用了这些字符串,应该没问题。但如果用户错误地传递了函数对象作为字符串参数,比如写成了'metrics=[tf.keras.metrics.mean_absolute_error]',但实际应该传递函数对象而不是字符串,这样会导致错误。例如,正确的做法是传递函数对象而不带引号: 正确: ```python model.compile(..., metrics=[tf.keras.metrics.mean_absolute_error]) ``` 错误: ```python model.compile(..., metrics=['tf.keras.metrics.mean_absolute_error']) # 错误地将函数引用作为字符串传递 ``` 这种情况下,字符串'tf.keras.metrics.mean_absolute_error'并不是Keras内置的指标名称,因此无法识别,导致类型错误。 此外,用户可能混淆了损失函数和指标函数的用法。虽然两者有时可以使用相同的函数,但作为指标时,需要确保正确传递。 另一个可能性是,用户使用的TensorFlow版本中某些指标名称被弃用或更改了名称。例如,某些版本可能要求使用缩写或者全称,这时候需要查阅对应版本的文档。 解决方案步骤可能包括: 1. 检查metrics参数中的字符串是否正确,是否使用'mean_absolute_error'或'mae'。 2. 尝试使用函数对象而非字符串,如直接导入tf.keras.metrics.mean_absolute_error并传递。 3. 确保TensorFlow版本是最新的,或者回退到稳定版本。 4. 检查模型输出和标签的形状是否匹配,以确保计算指标时没有形状错误。 例如,正确的代码示例: ```python import tensorflow as tf model = tf.keras.Sequential([...]) # 模型定义 model.compile(optimizer='adam', loss='mse', metrics=['mean_absolute_error']) # 使用字符串 # 或者 model.compile(optimizer='adam', loss='mse', metrics=[tf.keras.metrics.MeanAbsoluteError()]) # 使用类实例 # 或者 model.compile(optimizer='adam', loss='mse', metrics=[tf.keras.metrics.mean_absolute_error]) # 使用函数 ``` 如果用户使用的是函数形式,需要确保没有拼写错误,并且正确导入了函数。 此外,用户可能在自定义训练循环中错误地使用了指标,但根据问题描述,用户是在compile方法中设置metrics参数,所以问题应该出现在这里。 可能的错误信息示例可能包括: - TypeError: Value passed to parameter 'metrics' has no accepted conversion to list of metrics. - ValueError: Unknown metric function: 'mean_absolute_eror'(拼写错误) 当用户传递了错误的类型时,比如传递了一个不是字符串、函数或Metric实例的对象,就会触发类型错误。例如,如果用户不小心传递了一个损失函数而不是指标函数,或者传递了其他类型的对象。 最后,建议用户检查代码,确保metrics参数的每个元素都是合法的,并根据上述可能的原因进行修正。</think>在Keras或TensorFlow中遇到`metrics`参数类型错误(如使用`mean_absolute_error`时报错),通常由以下原因导致: --- ### **1. 指标名称拼写错误** Keras要求指标名称必须完全匹配内置标识符。 - 正确名称应为`'mean_absolute_error'`或其缩写`'mae'`。 - **错误示例**:`metrics=['mean_absolut_error']`(缺少字母`e`)或`'maee'`。 **修正方法**: ```python model.compile(..., metrics=['mae']) # 缩写形式 # 或 model.compile(..., metrics=['mean_absolute_error']) # 全称 ``` --- ### **2. 混淆字符串与函数对象** 若使用函数对象而非字符串,需直接引用函数而非字符串。 - **错误示例**:`metrics=['tf.keras.metrics.mean_absolute_error']`(错误地将函数路径作为字符串传递)。 - **正确方法**:传递函数对象或其实例。 **修正方法**: ```python from tensorflow.keras import metrics # 方式1:使用函数对象 model.compile(..., metrics=[metrics.mean_absolute_error]) # 方式2:使用Metric子类实例 model.compile(..., metrics=[metrics.MeanAbsoluteError()]) ``` --- ### **3. TensorFlow版本兼容性问题** 旧版本可能不支持某些简写或函数调用方式。 - **检查版本**:`print(tf.__version__)`,推荐使用≥2.0的版本。 - **升级命令**:`pip install --upgrade tensorflow`。 --- ### **4. 输入数据与模型输出不兼容** 尽管通常引发形状错误而非类型错误,仍需验证输出与标签的维度是否匹配。例如,模型输出为3D张量(如序列预测),而标签为2D时,可能触发计算异常。 **验证方法**: ```python print(model.output.shape) # 检查模型输出形状 print(y_train.shape) # 检查标签形状 ``` --- ### **完整代码示例** ```python import tensorflow as tf # 示例模型 model = tf.keras.Sequential([ tf.keras.layers.Dense(32, activation='relu', input_shape=(10,)), tf.keras.layers.Dense(1) ]) # 正确编译方式(使用字符串) model.compile( optimizer='adam', loss='mse', metrics=['mean_absolute_error'] # 或 'mae' ) # 正确编译方式(使用函数对象) model.compile( optimizer='adam', loss='mse', metrics=[tf.keras.metrics.mean_absolute_error] ) ``` --- ### **常见错误场景** | 错误类型 | 错误示例 | 修正方法 | |------------------------|-----------------------------------|-----------------------------------| | 拼写错误 | `metrics=['mean_abserror']` | 使用`'mae'`或全称 | | 函数对象误用为字符串 | `metrics=['tf.keras.metrics.mae']` | 移除引号,直接传递函数 | | 版本不兼容 | 旧版本中未更新API | 升级TensorFlow | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值