pytorch计算模型的参数量及FLOPs

本文介绍了使用thop包的profile方法和torchsummaryX的summary方法来计算ResNet50模型的参数量和计算量。thop结果显示参数量为25.56M,FLOPs为4111514624.00,而summary方法除了提供参数量和计算量外,还展示了每一层的详细信息。尽管两者计算结果略有差异,但都可用于理解和优化模型的复杂性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

方法一:使用thop包的profile方法

import torch
from thop import profile
from torchvision import models
model = models.resnet50(pretrained=False)
img = torch.zeros((1, 3, image_height, image_width))
flops, params = profile(model, inputs=(img,), verbose=False)

resnet50的输出结果

thop result  Params: 25.56M, Gflops: 4111514624.00

方法二:使用torchsummaryX的summary方法

import torch
from torchsummaryX import summary
from torchvision import models
model = models.resnet50(pretrained=False)
img = torch.zeros((1, 3, stride, stride), device=next(model.parameters()).device)
summary(model,img)

使用summary会输出三项:

  1. 每一层的参数的维度及数据尺寸,
  2. 每层的参数量及计算量
  3. 模型总的参数量及计算量
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    使用两种方式计算的参数量和计算量有一点区别
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值