MapReduce - 词频统计

这篇博客详细介绍了如何利用IDEA的Maven构建工具,执行MapReduce任务来统计文本的词频。首先,通过clean和install命令打包项目。接着,将生成的jar文件上传到Hadoop服务器。然后,通过Hadoop命令运行jar包,并最终在Hadoop集群上查看到如‘Dream:1’, ‘Hello:2’等词频统计结果。" 118739352,11016117,Python学习:随机数与列表操作实践,"['Python编程', '数据操作', '随机数生成', '列表方法']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

统计一个文本的词频

package Test01;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


public class WordCount {
    public static void main(String[] args){
        try{
            //获取配置对象
            Configuration conf = new Configuration();
            //对conf设置
            //获取job
            Job job = Job.getInstance(conf, "WordCount02");
            //对job设置运行主类
            job.setJarByClass(WordCount.class);
            //对job的map端属性设置
            job.setMapperClass(MyMapper.class);
            job.setMapOutputKeyClass(Text.class);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值