机器学习基础算法(决策树、随机森林)

本文深入探讨了决策树和随机森林的原理与应用,包括信息熵、信息增益、决策树算法(如ID3、C4.5、CART)、随机森林的构建过程及sklearn库的使用。此外,还讨论了决策树的优缺点及其改进方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

决策树

决策树就是利用if-then条件分支结构来分割数据的一种分类学习方法

信息论

信息熵

例:32个球队,其中一支夺冠的概率

其中包含的信息量应为:
H = -(p1 × log(2,p1) + p2 × log(2,p2) + … + p32 × log(2,p32))

  • 其中,p1 , p2 , … , p32 分别是这 32 个球队夺冠的概率
  • H是信息熵,单位是比特
  • 一个系统越是混乱,信息熵就越高

当 32 个球队夺冠概率相同时,对应的信息熵等于5比特,这个例子中信息熵不可能大于5比特。

信息增益

特征A对训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)之差,即公式为:

在这里插入图片描述
信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度

常见决策树使用的算法

  • ID3 算法:信息增益最大的准则
  • C4.5算法:信息增益率
  • CART算法:CART 算法的二分法可以简化决策树的规模,提高生成决策树的效率
    • 回归树:平方误差最小准则
    • 分类树:基尼系数最小准则

sklearn决策树API

class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,random_state=None)
  • criterion:默认是’gini’系数,也可以选择信息增益的熵’entropy’
  • max_depth:树的深度大小
  • random_state:随机数种子

决策树的优缺点以及改进

优点:

  • 简单的理解和解释,树木可视化。
  • 需要很少的数据准备,其他技术通常需要数据归一化

缺点:

  • 决策树学习者可以创建不能很好地推广数据的过于复杂的树,这被称为过拟合
  • 决策树可能不稳定,因为数据的小变化可能会导致完全不同的树被生成。

改进:

  • 减枝CART算法
  • 随机森林

随机森林

集成学习方法

  • 集成学习通过建立几个模型组合的来解决单一预测问题。
  • 它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。
  • 这些预测最后结合成单预测,因此优于任何一个单分类的做出预测。

随机森林过程

在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。

根据下列算法建造每棵树:

  • 用N来表示训练用例(样本)的个数,M表示特征数目。
  • 输入特征数目m,用于确定决策树上一个节点的决策结果;其中m应远小于M。
  • 从N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集(即bootstrap取样),并用未抽到的用例(样本)作预测,评估其误差。

为什么要有放回地抽样?
如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,都是绝对“片面的”(当然这样说可能不对)。也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决。

随机森林API

class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’,max_depth=None, bootstrap=True, random_state=None)
  • n_estimators:integer,optional(default = 10) 森林里的树木数量
  • criteria:string,可选(default =“gini”)分割特征的测量方法
  • max_depth:integer或None,可选(默认=无)树的最大深度
  • bootstrap:boolean,optional(default = True)是否在构建树时使用放回抽样

随机森林的优点

  • 在当前所有算法中,具有极好的准确率
  • 能够有效地运行在大数据集上
  • 能够处理具有高维特征的输入样本,而且不需要降维
  • 能够评估各个特征在分类问题上的重要性
  • 对于缺省值问题也能够获得很好得结果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值