TUM I2DL - exercise4小结

简单loss层的构建

class Loss(object):
    def __init__(self):
        self.grad_history = []

    def forward(self, y_out, y_truth):
        return NotImplementedError

    def backward(self, y_out, y_truth, upstream_grad=1.):
        return NotImplementedError

    def __call__(self, y_out, y_truth):
        loss = self.forward(y_out, y_truth)
        grad = self.backward(y_out, y_truth)
        return (loss, grad)


class L1(Loss):

    def forward(self, y_out, y_truth):
        """
        Performs the forward pass of the L1 loss function.

        :param y_out: [N, ] array predicted value of your model.
               y_truth: [N, ] array ground truth value of your training set.
        :return: [N, ] array of L1 loss for each sample of your training set.
        """
        result = None
        result = np.abs(y_out - y_truth)
        return result

    def backward(self, y_out, y_truth):
        "
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值