邱锡鹏《神经网络与深度学习》第一章 绪论 学习笔记

本文介绍了人工智能的概念,发展历程,以及关键领域如机器学习(包括特征学习、深度学习和神经网络)、表示学习(特别是局部表示和分布式表示)和深度学习中的贡献度分配问题。还探讨了神经网络的构造和人脑神经网络的原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        一个人在不接触对方的情况下,通过一种特殊的方式,和对方进行一系列问答。如果相当长时间内,他无法根据这些问题判断对方是人还是计算机,那么就可以认为这个计算机是智能的。———图灵测试

第一章  绪论

1.1人工智能

人工智能=“计算机控制”+“智能行为”

John McCarthy提出了人工智能的定义:人工智能就是要让机器的行为看起来像是人所表现的智能行为一样。

目前,人工智能的主要领域大体上可以分为以下几个方面:

机器学习(计算机视觉、语音信息处理、模式识别)

学习(机器学习、强化学习)

语言(自然语言处理)

记忆(知识表示)

决策(规划、数据挖掘)

1.1.1 人工智能的发展历史

1.推理期:通过人类经验,基于逻辑或者事实归纳出来一些规则,然后通过编写程序来让计算机完成一个任务,但低估了项目的难度,陷入了低谷。

2.知识期:意识到知识对于人工智能系统的重要性,构建知识库。

3.学习期:“学习”也是一种智能行为,让机器来自动学习,即机器学习

1.2 机器学习

机器学习从数学方面来说,就类似于从x到f(x)的过程,而我们需要构建函数(就是一系列规则)。

 然而我们的问题就是如何构造这个函数(规则)

用“芒果机器学习”来理解如何构建这个函数,如图:

步骤:

1.从所有的数据中提取出芒果的特征(如:颜色,大小,形状)这些就类比函数的自变量x

2.找出相对应的芒果质量(输出的变量)这些就类比是f(x)

3.将这些特征和输出的变量全部交给机器,并设计一个学习算法来学习芒果的特征与输出变量之间的相关模型

4.测试,用学习到的模型来预测芒果的质量

总结:机器学习就可以分为如图上述的步骤。

值得注意的是:浅层学习是不涉及特征学习,其特征主要是靠人工经验或特征转换方法来抽取;

然而通常来说特征处理主要由人工来完成。

1.3 表示学习

语义鸿沟人工智能的挑战之一。

底层特征高层语义之间的冲突:人们对文本、图像的理解无法从字符串或者图像的底层特征直接获得。

在表示学习中,有两个核心问题:一是“什么是一个好的表示”;二是“如何学习到好的表示”。

1.3.1 什么是好的数据表示?

一个好的表示具有一下几个优点:

1)很强的表示能力,即同样大小的向量可以表示更多的信息。

2)使后续的学习任务变简单,即需要包含更高层次的语义信息。

3)具有一般性,是任务或领域独立的。

1.3.2 两种表示特征的方式

以颜色为例

1.局部表示:一种表示颜色的方法是一种不同名字来命名不同的颜色,也称为离散表示符号表示。当需要增加一个颜色时,就需要增加一维向量,每一维向量就代表一种颜色,意味着,表示一种颜色,只有对应的一维向量为1,其余为0.

2.分布式表示:用RGB值来表示颜色,不同颜色对应到R、G、B三维空间中一个点,这种表示方式叫做分布式表示。和局部式相比,分布式表示的表示能力要强很多,分布式的向量维度一般比较低,一个三维的稠密向量就可以表示所有颜色。

1.3.3 表示学习:如何自动从数据中学习好的表示

在传统的机器学习种,也有很多相关特征学习的方法,比如主成分分析、线性判别分析等。

但是,传统的特征学习一般时通过人为地设计一些准则,然后根据这些准则来选取有效特征。特征的学习是和最终预测模型的学习是分开进行的,因此学习到的特征不一定可以提升最终模型的性能。

1.4 深度学习

深度学习=表示学习+决策(预测)学习(浅层学习)

深度学习是机器学习的一个子问题,其主要目的是从数据中自动学习到有效的特征表示。

深度学习需要解决的关键的问题是贡献度分配问题。什么是贡献度分配问题?即意思是在一个深度学习里面,我不知道是底层特征、中层特征还是高层特征对预测的结果比较大。以下棋为例,每当下完一盘棋,必有输有赢,我们会思考是那几步棋导致了最后的胜利,那几步棋导致了失败,这个时候就需要大量的练习来积累经验,从而判断是什么原因导致的下棋胜负原因。

上图是深度学习的数学描述。当F(x)连续时,证明这个嵌套的函数都是线性连续的,故没有提升空间。

        端到端学习(End-to-End Learning),也称端到端训练,是指在学习过程中不进行分模块或分阶段训练,直接优化任务的总体目标。同深度学习一样,都是要解决贡献度分配问题。目前,大部分采用神经网络模型的深度学习也可以看作一种端到端的学习。

1.5 神经网络

1.5.1 人脑神经网络

“当神经元A的一个轴突和神经元B很近,足以对它产生影响,并且持续地、重复地参与了对神经元B的兴奋,那么在这两个神经元或其中之一会发生某种生长过程或新陈代谢变化,以致于神经元A作为能使神经元B兴奋的细胞之一,它的效能加强了。”这个机制称为赫布理论赫布规则。

1.5.2 人工神经网络

人工神经元的构造:

当有了人工神经元后,就开始构造网络:

人工神经网络由神经元模型构成,这种由许多神经元组成的信息处理网络具有并行分布结构。

虽然这里将神经网络结构大体上分为三种类型,但是大多数网络都是复合型结构,即一个神经网络中包含多种网络结构。

神经网络如何解决贡献分配的问题?答案是利用偏导数计算各个部分的占比。

当我们发现某个偏导数的斜率越大,即影响程度越大,相应的贡献度分配的越大。

1.6 本书知识体系

知识结构:

路线图:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值