模块(Modules)是一个相对笼统的概念,可以将其看成包含变量或一组方法的Python文件对象,或者多个Python文件对象组成的目录。有了模块,一个Python文件中的方法或者变量就可以被外部访问使用,而不仅仅局限于文件内部使用。因为有了模块,Python对象的抽象和复用更为通用,而不同的模块放在一起就构成了一个package包。Python如此流行,就是因为在Python社区中有各种各样的包可以下载并直接使用,这些包可以用于完成数据处理、网络爬虫、网站建设、嵌入式编程、多媒体处理、人工智能等多种任务。
调用本地模块和包的基本格式为例子中所示
下面介绍一个使用random模块产生一组随机数,并存入列表的例子来展示模块的使用方法。
Numpy模块
Numpy(Numerical Python)是Python语言的一个扩展程序库,支持大量的多维数组与矩阵计算,此外也针对数组运算提供大量的数学函数库。Numpy功能非常强大,支持广播功能函数,线性代数运算,傅立叶变换等功能。
在使用Numpy时,可以直接使用import来导入。
1,Numpy生成数组
Numpy最重要的一个特点是其N维数组对象ndarray。ndarray与列表形式上相似,但是ndarray要求数组内部的元素必须是相同的类型。在生成ndarray时,采用Numpy的array方法。
使用numpy模块中的arange方法可以生成给定范围内的数组,其中的参数start表示起始数,stop表示终止数,step表示步长,即数组中相邻两个数字的差,dtype用于制定数据类型。
在numpy模块中,除了arrange方法生成数组外,还可以使用np.zeros((m,n))方法生成m行,n列的0值数组;使用np.ones((m,n))方法生成m行,n列的填充值为1的数组;使用np.eyes(m,n)方法生成m行,n列的对角线位置填充为1的矩阵;使用random方法生成随机数组。
2,Numpy数组基本运算
在numpy模块中,除了arrange方法生成数组外,还可以使用np.zeros((m,n))方法生成m行,n列的0值数组;使用np.ones((m,n))方法生成m行,n列的填充值为1的数组;使用np.eyes(m,n)方法生成m行,n列的对角线位置填充为1的矩阵;使用random方法生成随机数组。
3.Numpy数组统计方法
Numpy中提供了很多统计函数,可以快速地实现查找数组中的最小值、最大值,求解平均数、中位数、标准差等功能。