基于HOG特征提取和GRNN广义回归神经网络的人体姿态识别
人体姿态识别是计算机视觉领域的一个重要任务,它可以应用于许多领域,如人机交互、动作捕捉和运动分析等。在这篇文章中,我们将介绍一种基于HOG特征提取和GRNN广义回归神经网络的人体姿态识别方法,并提供相应的MATLAB源代码。
HOG(Histogram of Oriented Gradients)特征是一种常用的图像特征表示方法,它通过计算图像局部区域的梯度直方图来描述图像的形状和纹理信息。在人体姿态识别中,我们可以利用HOG特征提取算法来提取人体关键点周围的局部梯度信息。
首先,我们需要准备一个包含人体姿态标注的训练数据集。每个样本应包含人体图像和对应的关键点坐标。我们可以使用开源的人体姿态数据集,如MPII Human Pose或COCO等。
接下来,我们使用MATLAB中的计算机视觉工具箱来实现HOG特征提取。下面是一个示例代码片段:
% 加载训练数据集
load('train_dataset.mat');
% 提取HOG特征
hogFeatu