基于HOG特征提取和GRNN广义回归神经网络的人体姿态识别

134 篇文章 ¥59.90 ¥99.00
本文介绍了使用HOG特征提取和GRNN广义回归神经网络进行人体姿态识别的方法,包括数据集准备、HOG特征提取、GRNN模型训练及测试。提供了MATLAB实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于HOG特征提取和GRNN广义回归神经网络的人体姿态识别

人体姿态识别是计算机视觉领域的一个重要任务,它可以应用于许多领域,如人机交互、动作捕捉和运动分析等。在这篇文章中,我们将介绍一种基于HOG特征提取和GRNN广义回归神经网络的人体姿态识别方法,并提供相应的MATLAB源代码。

HOG(Histogram of Oriented Gradients)特征是一种常用的图像特征表示方法,它通过计算图像局部区域的梯度直方图来描述图像的形状和纹理信息。在人体姿态识别中,我们可以利用HOG特征提取算法来提取人体关键点周围的局部梯度信息。

首先,我们需要准备一个包含人体姿态标注的训练数据集。每个样本应包含人体图像和对应的关键点坐标。我们可以使用开源的人体姿态数据集,如MPII Human Pose或COCO等。

接下来,我们使用MATLAB中的计算机视觉工具箱来实现HOG特征提取。下面是一个示例代码片段:

% 加载训练数据集
load('train_dataset.mat');

% 提取HOG特征
hogFeatu
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值