R语言中的Gamma分布函数

90 篇文章 ¥59.90 ¥99.00
本文详述了如何在R语言中运用Gamma分布,包括使用函数生成随机变量,计算PDF和CDF,以及进行参数估计和拟合。通过示例展示了如何使用最大似然估计法对Gamma分布参数进行估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言中的Gamma分布函数

Gamma分布是概率统计中常用的一种连续概率分布,常用于描述随机事件的等待时间或持续时间。在R语言中,我们可以使用gamma()函数来生成Gamma分布的随机变量,计算概率密度函数(PDF)和累积分布函数(CDF),以及进行参数估计和拟合。

生成Gamma分布的随机变量
要生成Gamma分布的随机变量,我们可以使用rgamma()函数。该函数的参数包括n(生成的随机变量数量)、shape(形状参数)和rate(比率参数)。

# 生成10个Gamma分布的随机变量,形状参数为2,比率参数为0.5
random_vals <- rgamma(n = 10, shape = 2, rate = 0.5)
print(random_vals)

计算Gamma分布的概率密度函数(PDF)
在R语言中,我们可以使用dgamma()函数来计算Gamma分布的概率密度函数(PDF)。该函数的参数包括x(要计算PDF的值)、shape(形状参数)和rate(比率参数)。

# 计算Gamma分布在x = 1处的概率密度函数值,形状参数为2,比率参数为0.5
pdf_val <- dgamma(x = 1, shape = 2, rate = 0.5)
print(pdf_v
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值