动态规划解决方案:最长递增子序列
最长递增子序列(Longest Increasing Subsequence,简称LIS)是一种经典的动态规划问题,其目标是在给定序列中找到最长且递增的子序列。本文将详细介绍如何使用动态规划方法解决这个问题,并附上相应的源代码。
问题描述:
给定一个序列,我们需要找到其中最长的递增子序列。一个子序列是指从原序列中删除若干元素后得到的序列,而且删除的元素可以是任意的。递增子序列是指子序列中的元素按照从小到大的顺序排列。
动态规划解决方案:
我们可以使用动态规划来解决最长递增子序列问题。首先,定义一个长度与原序列相同的数组dp,用于存储以每个元素结尾的最长递增子序列的长度。接下来,我们遍历原序列,对于每个元素,我们从头开始遍历之前的元素,如果找到比当前元素小的元素,就更新dp数组中以当前元素结尾的最长递增子序列的长度。
具体实现:
下面是使用Python编写的动态规划解决最长递增子序列问题的源代码:
def longest_increasing_subsequence(nums):
n =