在实际间题中,影响一个事物的因素是很多的,人们总是希望通过各种试验来观察各种因素对试验结果的影响.例如,不同的生产厂家,不同的原材料、不同的操作规程以及不同的技术指标对产品的质量、性能都会有影响.然而,不同因素的影响大小不等
方差分析(analysis of variance.,ANOVA)是研究一种或多种因素的变化对试验结果的观测值是否有影响,从而找出较优的试验条件或生产条件的一种常用的统计方法
人们在试验中所考察到的数量指标,如产量、性能等,称为观测值,影响观测值的条件称为因素,因素的不同状态称为水平,在一个试验中,可以得出一系列不同的观测值。引起观测值不同的原因是多方面的,有的是处理方式或条件不同引起的,这些称为因素效应(或处理效应、条件变异):有的是试验过程中偶然性因素的干扰或观测误差所导致的,这些称为试验误差。
方差分析的主要工作是将测量数据的总变异按照变异原因的不同分解为因素效应和试验误差,并对其作出数量分析,比较各种原因在总变异中所占的重要程度,作出统计推断的依据,由此确定进一步的工作方向
单因素方差分析
对于一般情况下,设试验只有一个因素A在变化,其他因素都不变。A有r个水平
,在水平
下进行
次独立观测,设
表示在因素
的第
个水平下的第
次试验的结果,得到试验指标列在下表中,
简单地说:方差分析的研究内容是单因素/多因素影响下,多个正态总体的均值是否有显著差异,以及影响因素是否显著。
具体的过程是先构造检验统计量,求解出p值,和显著性水平相比较,若p值小于显著性水平,那我们拒绝原假设,任务这个因素显著。
p值:利用样本观测值得到的能够拒绝原假设的最小显著性水平
数学模型:
因子有
个水平
,所以我们有
个总体,假定:
(1).每个总体均为正态性总体,记为
(2).
(3).每个总体中抽取的样本相互独立,即之间相互独立
方差分析的工作是进行一个假设检验,原假设
不全相等
成立时,因子
的
个水平均值相同,
对总体的影响不显著,否则,因子
对总体的影响显著
构造检验统计量:我们利用平方和分解和均方构造的检验统计量,下面是比较简易的过程
总离差平方和(SST):
SST=SSA+SSE
下面引入均方,均方就是平方和与对应的自由度之比
下面我们不加证明的三个引理
的定义在下面
- SSA,SSE独立
之间相互独立,
的拒绝域: