时间序列模型
统计量:
通常,我们用Xt={ X∣t∈T}X_t=\{X|t∈T\}Xt={ X∣t∈T}表示一个时间序列,x1,x2,…,xnx_1,x_2,…,x_nx1,x2,…,xn是观察值,时间序列有下面几个常用的统计量,这些统计量,为我们拟合时间序列模型做出准备.这几个统计量分别是均值,方差,协方差,相关系数,自相关系数,偏自相关系数
均值:
理论的均值函数
μt=E(Xt) μ_t=E(X_t ) μt=E(Xt)
均值的估计值
μ^=1n∑i=1nxi \hatμ=\frac{1}{n} \sum_{i=1}^nx_i μ^=n1i=1∑nxi
方差:
理论的方差函数
σt2=D(Xt)=E(Xt2)−(E(Xt))2 σ_t^2=D(X_t )=E(X_t^2 )-(E(X_t ))^2 σt2=D(Xt)=E(Xt2)−(E(Xt))2
方差的估计值
σ^2=1n−1∑i=1n(xi−μ^)2 \hatσ^2=\frac{1}{n-1} \sum_{i=1}^n(x_i-\hatμ)^2 σ^2=n−11i=1∑n(xi−μ^)2
差分
对序列1阶差分
Δxt=xt−xt−1 Δx_t=x_t-x_{t-1} Δxt=xt−xt−1
2阶差分
Δ2xt=Δxt−Δxt−1=xt−2xt−1+xt−2 Δ^2 x_t=Δx_t-Δx_{t-1}=x_t-2x_{t-1}+x_{t-2} Δ2xt=Δxt−Δxt−1=xt−2xt−1+xt−2
P阶差分
Δpxt=Δp−1xt−Δp−1xt−1 Δ^p x_t=Δ^{p-1} x_t-Δ^{p-1} x_{t-1} Δpxt=Δp−1xt−Δp−1xt−1
P步差分
Δpxt=xt−xt−p Δ_p x_t=x_t-x_{t-p} Δpxt=xt−xt−p
延迟算子
Lxt=xt−1Lixt=xt−i Lx_t=x_{t-1}\\ L^i x_t=x_{t-i} Lxt=xt−1Lixt=xt−i
常见的时间序列模型:
xt=ϕ1x(t−1)+ϕ2x(t−2)+⋯+ϕpx(t−p)+εt x_t=ϕ_1 x_(t-1)+ϕ_2 x_(t-2)+⋯+ϕ_p x_(t-p)+\varepsilon_t xt=ϕ1x(t−1)+ϕ2x(t−2)+⋯+ϕpx(t−p)+εt
用延迟算子表示是
(1−ϕ1L−ϕ2L2−…−ϕpLp)xt=εt (1-ϕ_1 L-ϕ_2 L^2-…-ϕ_p L^p ) x_t=\varepsilon_t (1−ϕ1L−ϕ2L2−…−ϕpLp)xt=εt
平稳时间序列
白噪声序列
一个时间序列,如果完全符合正态分布,说明这个序列是白噪声序列,一旦时间序列通过了白噪声检验,说明这个序列已经没有了分析的价值,我们应该停止分析
白噪声序列满足条件
E(Xt)=μ E(X_t )=μ E(Xt)=μ
γ(s,t)={
σ2,s≠t0,s=t \gamma(s, t)=\left\{\begin{array}{l} \sigma^{2}, s \neq t \\ 0, s=t \end{array}\right. γ(s,t)={
σ2,s=t0,s=t
记为 Xt∼WN(μ,σ2)X_t∼WN(μ,σ^2)Xt∼WN(μ,σ2)
白噪声检验
我们不加证明的给出预备理论:
1.如果一个序列是白噪声序列,那么这个序列的以非零延迟的自相关系数ρ^k\hat ρ_kρ^k近似服从方差为观察期数的倒数,均值为0的正态分布
ρ^k∼N(0,1n),∀k≠0 \hatρ_k∼N(0,\frac{1}{n}),∀k≠0 ρ^k∼N(0,n1),∀k=0
2.若 Yi∼N(0,1),i=1,2,…,nY_i∼N(0,1),i=1,2,…,nYi∼N(0,1),i=1,2,…,n ,则
∑i=1nYi2∼χ2(n) \sum_{i=1}^nY_i^2∼\chi^2 (n) i=1∑nYi2∼χ2(n)
N个标准正态分布的平方和服从自由度n的卡方分布
原假设:延迟期数小于m的序列完全不相关
备择假设:延迟期数小于m的序列存在相关性
我们构造原假设 H0:ρ0=ρ1=⋯=ρmH_0:ρ_0=ρ_1=⋯=ρ_mH0:ρ0=ρ1=⋯=ρm
备择假设 H1:ρ0,ρ1,…,ρmH_1:ρ_0,ρ_1,…,ρ_mH1:ρ0,ρ1,…,ρm 至少存在非零值
白噪声检验常用的统计量有两个
Q=n∑i=1mρ^k2 Q=n\sum_{i=1}^m\hatρ_k^2 Q=ni=1∑mρ^k2
n是序列观测期数,m是指定的延期数
由于ρ^k∼N(0,1n),∀k≠0\hatρ_k∼N(0,\frac{1}{n}),∀k≠0ρ^k∼N(0,n1),∀k=0,所以 nρ^k∼N(0,1)\sqrt n \hatρ _k∼N(0,1)nρ^